Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year

IMPACT FACTOR 2017: 1.633
5-year IMPACT FACTOR: 1.642

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.591
Source Normalized Impact per Paper (SNIP) 2017: 1.160

See all formats and pricing
More options …
Volume 43, Issue 2


Novikov Engine with Fluctuating Heat Bath Temperature

Karsten Schwalbe / Karl Heinz Hoffmann
Published Online: 2018-02-08 | DOI: https://doi.org/10.1515/jnet-2018-0003


The Novikov engine is a model for heat engines that takes the irreversible character of heat fluxes into account. Using this model, the maximum power output as well as the corresponding efficiency of the heat engine can be deduced, leading to the well-known Curzon–Ahlborn efficiency. The classical model assumes constant heat bath temperatures, which is not a reasonable assumption in the case of fluctuating heat sources. Therefore, in this article the influence of stochastic fluctuations of the hot heat bath’s temperature on the optimal performance measures is investigated. For this purpose, a Novikov engine with fluctuating heat bath temperature is considered. Doing so, a generalization of the Curzon–Ahlborn efficiency is found. The results can help to quantify how the distribution of fluctuating quantities affects the performance measures of power plants.

Keywords: finite time thermodynamics; endoreversible thermodynamics; heat transport; temperature fluctuations; stochastic Novikov engine


  • [1]

    S. Carnot, Réflexions sur la puissance motrice du feu et sur les machines propres á développer cette puissance, Bachelier, Paris, 1824, in French; R. Fox (ed.), Libraire Philosophique J. Vrin, Paris 1978, see also On the Motive Power of Heat, American Society of Mechanical Engineers, 1943.Google Scholar

  • [2]

    H. B. Reitlinger, Sur l’Utilisation de la Chaleur dans les Machines à Feu, Vaillant-Carmanne, Liége, 1929.Google Scholar

  • [3]

    I. I. Novikov, The efficiency of atomic power stations, At. Energ. 3 (1957), 409, in Russian.Google Scholar

  • [4]

    I. I. Novikov, The efficiency of atomic power stations, J. Nucl. Energ. 7 (1958), 125–128, translated from Atomnaya Energiya 3 (1957), 409.Google Scholar

  • [5]

    P. Chambadal, Le choix du cycle thermique dans une usine generatrice nucleaire, Rev. Gén. Électr. 67 (1958), 332–345.Google Scholar

  • [6]

    F. L. Curzon and B. Ahlborn, Efficiency of a Carnot engine at maximum power output, Am. J. Phys. 43 (1975), 22–24.CrossrefGoogle Scholar

  • [7]

    K. H. Hoffmann, J. M. Burzler and S. Schubert, Endoreversible thermodynamics, J. Non-Equilib. Thermodyn. 22 (1997), 311–355.Google Scholar

  • [8]

    K. H. Hoffmann, J. M. Burzler, A. Fischer, M. Schaller and S. Schubert, Optimal process paths for endoreversible systems, J. Non-Equilib. Thermodyn. 28 (2003), 233–268.Google Scholar

  • [9]

    A. De Vos, Endoreversible Thermodynamics of Solar Energy Conversion, Oxford University Press, Oxford, 1992.Google Scholar

  • [10]

    M. H. Rubin, Optimal configuration of a class of irreversible heat engines. I, Phys. Rev. A 19 (1979), 1272–1276.CrossrefGoogle Scholar

  • [11]

    M. H. Rubin, Optimal configuration of a class of irreversible heat engines. II, Phys. Rev. A 19 (1979), 1277–1289.CrossrefGoogle Scholar

  • [12]

    T. Matolcsi, Ordinary Thermodynamics – Nonequilibrium Homogeneous Processes, 2nd ed., Society for the Unity of Science and Technology, Budapest, 2017; 1st ed. by Akadémiai Kiadó, Budapest, 2004, ISBN 963 05 8170 1.Google Scholar

  • [13]

    A. Fischer and K. H. Hoffmann, Can a quantitative simulation of an Otto engine be accurately rendered by a simple Novikov model with heat leak?, J. Non-Equilib. Thermodyn. 29 (2004), 9–28.Google Scholar

  • [14]

    A. De Vos, Reflections on the power delivered by endoreversible engines, J. Phys. D: Appl. Phys. 20 (1987), 232–236.CrossrefGoogle Scholar

  • [15]

    H. Müser, Thermodynamische Behandlung von Elektronenprozessen in Halbleiterrandschichten, Z. Phys. 148 (1957), 380–390, in German.CrossrefGoogle Scholar

  • [16]

    M. Castañs Carmago, Bases fisicas del aprovechamiento de la energia solar, Rev. Geofis. 35 (1976), 227–239, in Spanish.Google Scholar

  • [17]

    A. Bejan, D. W. Kearney and F. Kreith, Second law analysis and synthesis of solar collector systems, J. Sol. Energy Eng. 103 (1981), 23–28.CrossrefGoogle Scholar

  • [18]

    V. Bǎdescu, On the theoretical maximum efficiency of solar-radiation utilization, Energy 14 (1989), 571–573.CrossrefGoogle Scholar

  • [19]

    A. De Vos, Is a solar cell an edoreversible engine?, Sol. Cells 31 (1991), 181–196.CrossrefGoogle Scholar

  • [20]

    A. De Vos, Endoreversible thermodynamics and chemical reactions, J. Chem. Phys. 95 (1991), 4534–4540.CrossrefGoogle Scholar

  • [21]

    J. M. Gordon and V. N. Orlov, Performance Characteristics of Endoreversible Chemical Engines, J. Appl. Phys. 74 (1993), 5303–5309.CrossrefGoogle Scholar

  • [22]

    V. A. Mironova, A. M. Tsirlin, V. A. Kazakov and S. R. Berry, Finite-time thermodynamics: exergy and optimization time-constrained processes, J. Appl. Phys. 76 (1994), 629–636.CrossrefGoogle Scholar

  • [23]

    J. M. Gordon, Generalized power versus efficiency characteristics of heat engines: the thermoelectric generator as an instructive illustration, Am. J. Phys. 59 (1991), 551–555.CrossrefGoogle Scholar

  • [24]

    J. Chen and B. Andresen, The maximum coefficient of performance of thermoelectric heat pumps, Int. J. Power Energy Syst. 17 (1996), 22–28.Google Scholar

  • [25]

    J. Chen and B. Andresen, New bounds on the performance parameters of a thermoelectric generator, Int. J. Power Energy Syst. 16 (1996), 23–27.Google Scholar

  • [26]

    J. Chen, Thermodynamic analysis of a solar-driven thermoelectric generator, J. Appl. Phys. 79 (1996), 2717–2721.CrossrefGoogle Scholar

  • [27]

    C. Wu, Performance of solar-pond thermoelectric power generators, Int. J. Ambient Energy 16 (1995), 59–66.CrossrefGoogle Scholar

  • [28]

    C. Wu, Analysis of waste-heat thermoelectric power generators, Appl. Thermal Eng. 16 (1996), 63–69.CrossrefGoogle Scholar

  • [29]

    K. Schwalbe, A. Fischer, K. H. Hoffmann and J. Mehnert, Applied endoreversible thermodynamics: optimization of powertrains, in: R. Zevenhouen (ed.), Proceedings of ECOS 2014 – 27th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2014, June 15–19, 2014, Turku, Finland), Turku, Finland (2014), 45–55.Google Scholar

  • [30]

    A. Bejan, Advanced Engineering Thermodynamics, John Wiley & Sons, New York, 1988.Google Scholar

  • [31]

    J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math. 30 (1906), 175–193, in French.CrossrefGoogle Scholar

About the article

Received: 2018-01-15

Revised: 2018-01-23

Accepted: 2018-01-24

Published Online: 2018-02-08

Published in Print: 2018-04-25

Citation Information: Journal of Non-Equilibrium Thermodynamics, Volume 43, Issue 2, Pages 141–150, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2018-0003.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Karsten Schwalbe and Karl Heinz Hoffmann
Applied Thermal Engineering, 2018
Karsten Schwalbe and Karl Heinz Hoffmann
Journal of Non-Equilibrium Thermodynamics, 2018, Volume 0, Number 0

Comments (0)

Please log in or register to comment.
Log in