Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year


IMPACT FACTOR 2017: 1.633
5-year IMPACT FACTOR: 1.642

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.591
Source Normalized Impact per Paper (SNIP) 2017: 1.160

Online
ISSN
1437-4358
See all formats and pricing
More options …
Volume 43, Issue 3

Issues

Improved Ni and Cd Rejection in Cellulose Acetate Mixed Matrix Membranes Coated with PVA/Fe3O4

Mohammad Nouri / Azam Marjani / Majid Tajdari / Farhad Heidary / Mahmoud Salimi
Published Online: 2018-06-09 | DOI: https://doi.org/10.1515/jnet-2018-0011

Abstract

A series of polyvinyl alcohol (PVA)/Fe3O4-coated cellulose acetate mixed matrix membranes were analyzed for Cd and Ni removal, both experimentally and theoretically. The effect of the coating layer on the metal ion rejection performance was investigated using molecular modeling approaches. Lower energy requirements for the detachment of ions from the coating layer were calculated. Our results imply that the coating layer interacts with metal ions to a much lower extent than the substrate layer does. Smaller mean square displacement data were calculated in the coating layer than in the substrate layer, which indicates a lower diffusivity of ions in the coating layer. This in turn shows the coating layer efficiently prevents ion transfer and provides higher retention/rejection. We conclude that applying a coating layer with lower Fe3O4 content would enhance the ion rejection performance of cellulose acetate mixed matrix membranes. The addition of Fe3O4 particles increases the number of active sites and the surface area, while a high content of these particles must be avoided as they may surround functional groups of polymer chains and also increase the porosity, which decreases the rejection performance of membranes.

Keywords: cellulose acetate; nanocomposite membranes; Fe3O4 nanoparticles; ions rejection; molecular modeling

References

  • [1]

    M. Asgarpour Khansary, S. Shirazian and M. Asadollahzadeh, Polymer-water partition coefficients in polymeric passive samplers, Environ. Sci. Pollut. Res. Int. 24 (2017), no. 3, 2627–2631.CrossrefGoogle Scholar

  • [2]

    A. Ghasemi, et al., Using quantum chemical modeling and calculations for evaluation of cellulose potential for estrogen micropollutants removal from water effluents, Chemosphere 178 (2017), 411–423.CrossrefWeb of ScienceGoogle Scholar

  • [3]

    M. A. Khansary, et al., An enquiry on appropriate selection of polymers for preparation of polymeric nanosorbents and nanofiltration/ultrafiltration membranes for hormone micropollutants removal from water effluents, Chemosphere 168 (2017), 91–99.Web of ScienceCrossrefGoogle Scholar

  • [4]

    E. Worch, Fixed-bed adsorption in drinking water treatment: A critical review on models and parameter estimation, J. Water Supply, Res. Technol., AQUA 57 (2008), no. 3, 171.Web of ScienceCrossrefGoogle Scholar

  • [5]

    E. Karezani, A. Hallajisani and M. A. Khansary, A quantum mechanics/molecular mechanics (QM/MM) investigation on the mechanism of adsorptive removal of heavy metal ions by lignin: Single and competitive ion adsorption, Cellulose 24 (2017), no. 8, 3131–3143.CrossrefWeb of ScienceGoogle Scholar

  • [6]

    M. Xu, et al., A research on application of water treatment technology for reclaimed water irrigation, Int. J. Hydrog. Energy 41 (2016), no. 35, 15930–15937.Web of ScienceCrossrefGoogle Scholar

  • [7]

    E. Zanacic, J. Stavrinides and D. W. McMartin, Field-analysis of potable water quality and ozone efficiency in ozone-assisted biological filtration systems for surface water treatment, Water Res. 104 (2016), 397–407.Web of ScienceCrossrefGoogle Scholar

  • [8]

    B. Mahmoud, M. Yosra and A. Nadia, Effects of magnetic treatment on scaling power of hard waters, Sep. Purif. Technol. 171 (2016), 88–92.CrossrefWeb of ScienceGoogle Scholar

  • [9]

    M. A. Khansary, A. Marjani and S. Shirazian, On the search of rigorous thermo-kinetic model for wet phase inversion technique, J. Membr. Sci. 538 (2017), 18–33.CrossrefWeb of ScienceGoogle Scholar

  • [10]

    M. Aroon, et al., Performance studies of mixed matrix membranes for gas separation: A review, Sep. Purif. Technol. 75 (2010), no. 3, 229–242.CrossrefWeb of ScienceGoogle Scholar

  • [11]

    M. Asgarpour Khansary and S. Shirazian, Theoretical modeling for thermophysical properties of cellulose: Pressure/volume/temperature data, Cellulose 23 (2016), no. 2, 1101–1105.CrossrefWeb of ScienceGoogle Scholar

  • [12]

    D. J. Miller, et al., Surface modification of water purification membranes, Angew. Chem., Int. Ed. Engl. 56 (2017), no. 17, 4662–4711.CrossrefGoogle Scholar

  • [13]

    V. Kochkodan, D. J. Johnson and N. Hilal, Polymeric membranes: Surface modification for minimizing (bio)colloidal fouling, Adv. Colloid Interface Sci. 206 (2014), 116–140.CrossrefWeb of ScienceGoogle Scholar

  • [14]

    D. Rana and T. Matsuura, Surface modifications for antifouling membranes, Chem. Rev. 110 (2010), no. 4, 2448–2471.CrossrefWeb of ScienceGoogle Scholar

  • [15]

    R. Reis, et al., Towards enhanced performance thin-film composite membranes via surface plasma modification, Sci. Rep. 6 (2016), 29206.Web of ScienceGoogle Scholar

  • [16]

    M. Aroon, et al., Morphology and permeation properties of polysulfone membranes for gas separation: Effects of non-solvent additives and co-solvent, Sep. Purif. Technol. 72 (2010), no. 2, 194–202.Web of ScienceCrossrefGoogle Scholar

  • [17]

    M. Vinoba, et al., Recent progress of fillers in mixed matrix membranes for CO2 separation: A review, Sep. Purif. Technol. 188 (2017), 431–450.CrossrefWeb of ScienceGoogle Scholar

  • [18]

    M. Galizia, et al., 50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities, Macromolecules 50 (2017), no. 20, 7809–7843.Web of ScienceCrossrefGoogle Scholar

  • [19]

    L. Keshavarz, M. A. Khansary and S. Shirazian, Phase diagram of ternary polymeric solutions containing nonsolvent/solvent/polymer: Theoretical calculation and experimental validation, Polymer 73 (2015), 1–8.Web of ScienceCrossrefGoogle Scholar

  • [20]

    M. Fayazi, M. Ghanei-Motlagh and M. A. Taher, The adsorption of basic dye (Alizarin red S) from aqueous solution onto activated carbon/γ-Fe2O3 nano-composite: Kinetic and equilibrium studies, Mater. Sci. Semicond. Process. 40 (2015), 35–43.CrossrefGoogle Scholar

  • [21]

    Dassault Systemes Materials Studio Tutorials. 2017, BIOVIA Support: 5005 Wateridge Vista Drive, San Diego, CA 92121 USA.

  • [22]

    N. Metropolis, et al., Equation of state calculations by fast computing machines, J. Chem. Phys. 21 (1953), no. 6, 1087–1092.CrossrefGoogle Scholar

  • [23]

    S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by simulated annealing, Science 220 (1983), no. 4598, 671–680.CrossrefGoogle Scholar

  • [24]

    V. Černý, Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm, J. Optim. Theory Appl. 45 (1985), no. 1, 41–51.CrossrefGoogle Scholar

  • [25]

    M. Meunier, Diffusion coefficients of small gas molecules in amorphous cis-1,4-polybutadiene estimated by molecular dynamics simulations, J. Chem. Phys. 123 (2005), no. 13, 134906.Google Scholar

  • [26]

    F. Fadaei, V. Hoshyargar, S. Shirazian, S. N. Ashrafizadeh, Mass transfer simulation of ion separation by nanofiltration considering electrical and dielectrical effects, Desalination 284 (2012), 316–323.CrossrefWeb of ScienceGoogle Scholar

  • [27]

    M. Hemmati, N. Nazari, A. Hemmati, S. Shirazian, Phenol removal from wastewater by means of nanoporous membrane contactors, J. Ind. Eng. Chem. 21 (2015), 1410–1416.CrossrefWeb of ScienceGoogle Scholar

  • [28]

    A. Marjani, S. Shirazian, Hydrodynamic investigations on heavy metal extraction in membrane extractors, Orient. J. Chem. 27 (2011), no. 4, 1311–1316.Google Scholar

  • [29]

    G. Mehdi, F. Safoora, S. Saeed, Modeling of water transport through nanopores of membranes in direct-contact membrane distillation process, Polym. Eng. Sci. 54 (2014), no. 3, 660–666.CrossrefWeb of ScienceGoogle Scholar

  • [30]

    S. M. R. Razavi, M. Rezakazemi, A. B. Albadarin, S. Shirazian, Simulation of CO2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors, Chem. Eng. Process., Process. Intensif. 108 (2016), 27–34.Google Scholar

  • [31]

    S. M. R. Razavi, S. Shirazian, M. Nazemian, Numerical simulation of CO2 separation from gas mixtures in membrane modules: Effect of chemical absorbent, Arab. J. Chem. 9 (2016), no. 1, 62–71.Google Scholar

  • [32]

    R. S. M. Reza, S. Saeed, N. M. Sattari, Investigations on the ability of di-isopropanol amine solution for removal of CO2 from natural gas in porous polymeric membranes, Polym. Eng. Sci. 55 (2015), no. 3, 598–603.Web of ScienceCrossrefGoogle Scholar

  • [33]

    M. Rezakazemi, A. Dashti, M. Asghari, S. Shirazian, H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS, Int. J. Hydrog. Energy 42 (2017), no. 11, 15211–15225.Google Scholar

  • [34]

    S. Shirazian, S. N. Ashrafizadeh, Near-critical extraction of the fermentation products by membrane contactors: A mass transfer simulation, Ind. Eng. Chem. Res. 50 (2011), no. 4, 2245–2253.CrossrefWeb of ScienceGoogle Scholar

  • [35]

    S. Shirazian, S. N. Ashrafizadeh, Synthesis of substrate-modified LTA zeolite membranes for dehydration of natural gas, Fuel 148 (2015), 112–119.Web of ScienceCrossrefGoogle Scholar

  • [36]

    S. Shirazian, S. N. Ashrafizadeh, LTA and ion-exchanged LTA zeolite membranes for dehydration of natural gas, J. Ind. Eng. Chem. 22 (2015), 132–137.CrossrefWeb of ScienceGoogle Scholar

  • [37]

    M. R. Sohrabi, A. Marjani, S. Moradi, M. Davallo, S. Shirazian, Theoretical studies on membrane-based gas separation using Computational Fluid Dynamics (CFD) of mass transfer, J. Chem. Soc. Pak. 33 (2011), no. 4, 464–473.Google Scholar

  • [38]

    M. Asgarpour Khansary, A. Kazemi Nezhad Estahbanati, B. Shams, A. Marjani, S. Shirazian, Correlation of sorption-induced swelling in polymeric films with reference to attenuated total reflectance Fourier-transform infrared spectroscopy data, Eur. Polym. J. 91 (2017), 429–435.Web of ScienceCrossrefGoogle Scholar

  • [39]

    M. Asgarpour Khansary, A. Marjani, S. Shirazian, Prediction of carbon dioxide sorption in polymers for capture and storage feasibility analysis, Chem. Eng. Res. Des. 120 (2017), 254–258.CrossrefWeb of ScienceGoogle Scholar

  • [40]

    M. Ghadiri, M. Mohammadi, M. Asadollahzadeh, S. Shirazian, Molecular separation in liquid phase: Development of mechanistic model in membrane separation of organic compounds, J. Mol. Liq. 262 (2018), 336–344.CrossrefGoogle Scholar

  • [41]

    A. Ghasemi, M. Asgarpour Khansary, A. Marjani, S. Shirazian, Using quantum chemical modeling and calculations for evaluation of cellulose potential for estrogen micropollutants removal from water effluents, Chemosphere 178 (2017), 411–423.CrossrefWeb of ScienceGoogle Scholar

  • [42]

    S. Jooshani, M. Asgarpour Khansary, A. Marjani, S. Shirazian, J. Shang, Contaminant uptake by polymeric passive samplers: A modeling study with experimental validation, Chem. Eng. Res. Des. 129 (2018), 231–236.CrossrefWeb of ScienceGoogle Scholar

  • [43]

    M. Mohammadi, M. Asadollahzadeh, S. Shirazian, Molecular-level understanding of supported ionic liquid membranes for gas separation, J. Mol. Liq. 262 (2018), 230–236.CrossrefGoogle Scholar

  • [44]

    H. Nazem, C. Ghotbi, M. H. Zare, S. Shirazian, Experimental investigation and thermodynamic modeling of amino acids partitioning in a water/ionic liquid system, J. Mol. Liq. 260 (2018), 386–390.Web of ScienceCrossrefGoogle Scholar

  • [45]

    A. Sadeghi, H. Nazem, M. Rezakazemi, S. Shirazian, Predictive construction of phase diagram of ternary solutions containing polymer/solvent/nonsolvent using modified Flory-Huggins model, J. Mol. Liq. 263 (2018), 282–287.CrossrefGoogle Scholar

  • [46]

    M. Rezakazemi, A. Marjani, S. Shirazian, Organic solvent removal by pervaporation membrane technology: experimental and simulation, Environ. Sci. Pollut. Res. (2018).Google Scholar

About the article

Received: 2018-04-11

Revised: 2018-04-23

Accepted: 2018-05-04

Published Online: 2018-06-09

Published in Print: 2018-07-26


Citation Information: Journal of Non-Equilibrium Thermodynamics, Volume 43, Issue 3, Pages 237–243, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2018-0011.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in