Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year

IMPACT FACTOR 2017: 1.633
5-year IMPACT FACTOR: 1.642

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.591
Source Normalized Impact per Paper (SNIP) 2017: 1.160

See all formats and pricing
More options …
Volume 43, Issue 3


Optimal Control of an Endoreversible Solar Power Plant

Karsten Schwalbe / Karl Heinz Hoffmann
Published Online: 2018-06-16 | DOI: https://doi.org/10.1515/jnet-2018-0021


While in the classic Curzon–Ahlborn and Novikov engines the temperatures of the heat baths are kept fixed or follow a deterministic time function, it is the aim of this work to study the impact of fluctuating heat bath temperatures. As an example serves a solar power plant, where the stochastically varying cloud cover leads to fluctuations in the temperature of the hot heat bath. This solar thermal power plant is modeled as a stochastic endoreversible system. On the basis of this model the maximum expected work output of the power plant and the corresponding optimal control policy is derived. For the considered system it is found that the maximum expected work output changes with the reversion speed of the hot temperature depending on the relation of the starting hot temperature and the temperature of the power plant’s receiver. Additionally, it is found that the maximum expected work output increases with the hot temperature’s fluctuation strength.

Keywords: Finite-Time Thermodynamics; Endoreversible Thermodynamics; temperature fluctuations; Stochastic Control Theory; Pontryagin’s maximum principle; Hamilton–Jacobi–Bellman equation


  • [1]

    K. H. Hoffmann, J. M. Burzler and S. Schubert, Endoreversible Thermodynamics, J. Non-Equilib. Thermodyn. 22 (1997), no. 4, 311–355.Google Scholar

  • [2]

    A. De Vos, Endoreversible Thermodynamics and Chemical Reactions, J. Chem. Phys. 95 (1991), 4534–4540.CrossrefGoogle Scholar

  • [3]

    H. B. Reitlinger, Sur l’utilisation de la chaleur dans les machines á feu, Vaillant-Carmanne, Liége, 1929.Google Scholar

  • [4]

    I. I. Novikov, The Efficiency of Atomic Power Stations, At. Energy 3 (1957), 409, in Russian.Google Scholar

  • [5]

    I. I. Novikov, The Efficiency of Atomic Power Stations, J. Nucl. Energy 7 (1958), 125–128, translated from Atomnaya Energiya, 3 (1957), 409.Google Scholar

  • [6]

    P. Chambadal, Le choix du cycle thermique dans une usine generatrice nucleaire, Rev. gén. électr. 67 (1958), 332–345.Google Scholar

  • [7]

    F. L. Curzon and B. Ahlborn, Efficiency of a Carnot Engine at Maximum Power Output, Am. J. Phys. 43 (1975), 22–24.CrossrefGoogle Scholar

  • [8]

    A. Vaudrey, F. Lanzetta and M. Feidt, H. B. Reitlinger and the origins of the efficiency at maximum power formula for heat engines, J. Non-Equilib. Thermodyn. 39 (2014), no. 4, 199–203.Web of ScienceGoogle Scholar

  • [9]

    K. Schwalbe and K. H. Hoffmann, Novikov engine with fluctuating heat bath temperature, J. Non-Equilib. Thermodyn. 43 (2018), no. 2, 141–150.CrossrefWeb of ScienceGoogle Scholar

  • [10]

    K. Schwalbe and K. H. Hoffmann, Performance Features of a Stationary Stochastic Novikov Engine, Entropy 20 (2018), 52, 1–13.Web of ScienceGoogle Scholar

  • [11]

    S. Sieniutycz, Finite-rate thermodynamics of power production in thermal, chemical and electrochemical systems, Int. J. Heat Mass Transf. 53 (2010), 2864–2876.CrossrefWeb of ScienceGoogle Scholar

  • [12]

    S. Sieniutycz, Identification and selection of unconstrained controls in power systems propelled by heat and mass transfer, Int. J. Heat Mass Transf. 54 (2011), 938–948.CrossrefWeb of ScienceGoogle Scholar

  • [13]

    S. Sieniutycz, M. Blesznowski, A. Zieleniak and J. Jewulski, Power generation in thermochemical and electrochemical systems – a thermodynamic theory, Int. J. Heat Mass Transf. 55 (2012), 3984–3994.Web of ScienceCrossrefGoogle Scholar

  • [14]

    K. Wagner and K. H. Hoffmann, Endoreversible modeling of a PEM fuel cell, J. Non-Equilib. Thermodyn. 40 (2015), no. 4, 283–294.Web of ScienceGoogle Scholar

  • [15]

    V. Bǎdescu, On the Theoretical Maximum Efficiency of Solar-Radiation Utilization, Energy 14 (1989), no. 9, 571–573.CrossrefGoogle Scholar

  • [16]

    K. Schwalbe, A. Fischer, K. H. Hoffmann and J. Mehnert, Applied endoreversible thermodynamics: Optimization of powertrains, in: Proceedings of ECOS 2014 – 27th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2014 Turku, Finland, June 15–19, 2014, (R. Zevenhouen, ed.), Turku, Finland, 2014, 45–55.Google Scholar

  • [17]

    J. Chen and B. Andresen, New bounds on the performance parameters of a thermoelectric generator, Int. J. Electr. Power Energy Syst. 16 (1996), 23–27.Google Scholar

  • [18]

    C. Wu, Performance of solar-pond thermoelectric power generators, Int. J. Ambient Energy 16 (1995), no. 2, 59–66.CrossrefGoogle Scholar

  • [19]

    S. C. Kaushik, S. Manikandan and R. Hans, Energy and exergy analysis of thermoelectric heat pump system, Int. J. Heat Mass Transf. 86 (2015), 843–852.Web of ScienceCrossrefGoogle Scholar

  • [20]

    A. Fischer and K. H. Hoffmann, Can a quantitative simulation of an Otto engine be accurately rendered by a simple Novikov model with heat leak? J. Non-Equilib. Thermodyn. 29 (2004), no. 1, 9–28.Google Scholar

  • [21]

    S. Kojima, Maximum Work of Free-Piston Stirling Engine Generators, J. Non-Equilib. Thermodyn. 42 (2017), no. 2, 169–186.Web of ScienceGoogle Scholar

  • [22]

    S. Kojima, Theoretical Evaluation of the Maximum Work of Free-Piston Engine Generators, J. Non-Equilib. Thermodyn. 42 (2017), no. 1, 31–58.Web of ScienceGoogle Scholar

  • [23]

    R. T. Páez-Hernández, P. Portillo-Díaz, D. Ladino-Luna, A. Ramírez-Rojas and J. C. Pacheco-Paez, An analytical study of the endoreversible Curzon-Ahlborn cycle for a non-linear heat transfer law, J. Non-Equilib. Thermodyn. 41 (2016), no. 1, 19–27.Web of ScienceGoogle Scholar

  • [24]

    G. Özel, E. Açıkkalp, A. F. Savaş and H. Yamık, Comparative Analysis of Thermoeconomic Evaluation Criteria for an Actual Heat Engine, J. Non-Equilib. Thermodyn. 41 (2016), no. 3, 225–235.Web of ScienceGoogle Scholar

  • [25]

    Y. Zhang, J. Guo, G. Lin and J. Chen, Universal Optimization Efficiency for Nonlinear Irreversible Heat Engines, J. Non-Equilib. Thermodyn. 42 (2017), no. 3, 253–263.Web of ScienceGoogle Scholar

  • [26]

    X. Cheng and X. Liang, Analyses of entropy generation and heat entransy loss in heat transfer and heat-work conversion, Int. J. Heat Mass Transf. 64 (2013), 903–909.CrossrefWeb of ScienceGoogle Scholar

  • [27]

    K. H. Kim and K. Kim, Comparative analyses of energy-exergy-entransy for the optimization of heat-work conversion in power generation systems, Int. J. Heat Mass Transf. 84 (2015), 80–90.Web of ScienceCrossrefGoogle Scholar

  • [28]

    J. Wu, A new approach to determining the intermediate temperatures of endoreversible combined cycle power plant corresponding to maximum power, Int. J. Heat Mass Transf. 91 (2015), 150–161.Web of ScienceCrossrefGoogle Scholar

  • [29]

    J. Xu, Y. Zheng, C. Yu, X. Xie, Z. Li and X. Zhao, An actual thermal efficiency expression for heat engines: effect of heat transfer roadmaps, Int. J. Heat Mass Transf. 113 (2017), 556–568.CrossrefWeb of ScienceGoogle Scholar

  • [30]

    Z. Wu, L. Chen and H. Feng, Thermodynamic Optimization for an Endoreversible Dual-Miller Cycle (DMC) with Finite Speed of Piston, Entropy 20 (2018), 165, 1–13.Web of ScienceGoogle Scholar

  • [31]

    K. Wagner and K. H. Hoffmann, Chemical reactions in endoreversible thermodynamics, Eur. J. Phys. 37 (2016), 015101.Web of ScienceGoogle Scholar

  • [32]

    L. Onsager, Reciprocal Relations in Irreversible Processes. I, Phys. Rev. 37 (1931), no. 4, 405–426.CrossrefGoogle Scholar

  • [33]

    J. Chen and Z. Yan, Optimal performance of endoreversible cycles for another linear heat transfer law, J. Phys. D, Appl. Phys. 26 (1993), 1581–1586.CrossrefGoogle Scholar

  • [34]

    L. Chen and Z. Yan, The Effect of Heat-Transfer Law on Performance of a Two-Heat-Source Endoreversible Cycle, J. Chem. Phys. 90 (1989), no. 7, 3740–3748.CrossrefGoogle Scholar

  • [35]

    A. De Vos, Efficiency of some heat engines at maximum-power conditions, Am. J. Phys. 53 (1985), 570–573.CrossrefGoogle Scholar

  • [36]

    G. E. Uhlenbeck and L. S. Ornstein, On the Theory of the Brownian Motion, Phys. Rev. 36 (1930), no. 5, 823–841.CrossrefGoogle Scholar

  • [37]

    K. H. Hoffmann and P. Salamon, The Optimal Simulated Annealing Schedule for a Simple Model, J. Phys. A, Math. Gen. 23 (1990), 3511–3523.CrossrefGoogle Scholar

  • [38]

    J. M. G. Vilar and J. M. Rubi, Open determinants of population responses to environmental fluctuations, Sci. Rep. 8 (2018), no. 887, 1–12.Google Scholar

  • [39]

    L. S. Pontryagin, V. G. Boltyanski, R. V. Gamkrelidze and E. F. Mishtchenko, The Mathematical Theory of Optimal Processes, Interscience, New York, 1962.Google Scholar

  • [40]

    W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Applications of Mathematics 1, Springer-Verlag, New York, 1975.Google Scholar

About the article

Received: 2018-05-24

Accepted: 2018-05-24

Published Online: 2018-06-16

Published in Print: 2018-07-26

Citation Information: Journal of Non-Equilibrium Thermodynamics, Volume 43, Issue 3, Pages 255–271, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2018-0021.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in