Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year


IMPACT FACTOR 2017: 1.633
5-year IMPACT FACTOR: 1.642

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.591
Source Normalized Impact per Paper (SNIP) 2017: 1.160

Online
ISSN
1437-4358
See all formats and pricing
More options …
Volume 43, Issue 4

Issues

Upper Bounds for the Conversion Efficiency of Diluted Blackbody Radiation Energy into Work

Viorel Badescu
  • Corresponding author
  • Candida Oancea Institute, Polytechnic University of Bucharest, Spl. Independentei 313, Bucharest 060042, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-19 | DOI: https://doi.org/10.1515/jnet-2018-0004

Abstract

A new formula has been proposed for the Landsberg–Tonge function χ(ε) entering the entropy density flux of the diluted blackbody radiation of dilution factor ε. Two models have been proposed for the conversion of diluted blackbody radiation energy into work. The Carnot and Petela–Landsberg–Press relationships do not provide accurate upper bounds for the real conversion efficiency and in some cases they wrongly estimate positive output work when the converter of radiation energy into work does not operate. Four upper bounds for the conversion efficiency have been derived. The most accurate upper bound efficiency requires the numerical solution of an algebraic equation for the optimum absorber temperature while the second best upper bound efficiency has the advantage that it is a simple analytical formula.

Keywords: diluted blackbody radiation; selective absorbers; upper bound conversion efficiency

References

  • [1]

    V. Badescu, Lost available work and entropy generation: Heat versus radiation reservoirs, J. Non-Equilib. Thermodyn. 38 (2013), 313–333.Web of ScienceGoogle Scholar

  • [2]

    M. Planck, The Theory of Heat Radiation, Barth, Leipzig, Germany, 1913. (English translation by M. Masius, P. Blakiston’s Son, Philadelphia, Pa., 1914; English translation by M. Masius, Dover, New York, 1959.)Google Scholar

  • [3]

    P. T. Landsberg and G. Tonge, Thermodynamics of the conversion of diluted radiation, J. Phys. A, Math. Nucl. Gen. 12 (1979), 551–562.CrossrefGoogle Scholar

  • [4]

    V. Badescu, On the thermodynamics of the conversion of diluted radiation, J. Phys. D, Appl. Phys. 23 (1990), 289–292.CrossrefGoogle Scholar

  • [5]

    V. Badescu, Maximum conversion efficiency for the utilization of multiply scattered solar radiation, J. Phys. D, Appl. Phys. 24 (1991), 1882–1885.CrossrefGoogle Scholar

  • [6]

    M. Castans, A. Soler and F. Soriano, Theoretical maximal efficiency of diffuse radiation, Sol. Energy 38 (1987), 267–270.CrossrefGoogle Scholar

  • [7]

    V. Badescu, L’exergie de la radiation solaire directe et diffuse sur la surface de la Terre, Entropy 145 (1988), 41–45.Google Scholar

  • [8]

    W. Wu and Y. Liu, Radiation entropy flux and entropy production of the earth system, Rev. Geophys. 48 (2010) RG2003.Web of ScienceGoogle Scholar

  • [9]

    W. Wu and Y. Liu, A new one-dimensional radiative equilibrium model for investigating atmospheric radiation entropy flux, Phil. Trans. R. Soc. B 365 (2010), 1367–1376.CrossrefGoogle Scholar

  • [10]

    S. E. Wright, D. S. Scott, J. B. Haddow and M. A. Rosen, On the entropy of radiative transfer in engineering thermodynamics, Int. J. Eng. Sci. 39 (2001), 1691–1706.CrossrefGoogle Scholar

  • [11]

    S. E. Wright, Comparative analysis of the entropy of radiative heat transfer and heat conduction, Int. J. Thermodyn. 10 (2007),27–35.Google Scholar

  • [12]

    S. M. Jeter, Maximum conversion efficiency for the utilization of direct solar radiation, Sol. Energy 26 (1981), 231–236.CrossrefGoogle Scholar

  • [13]

    R. Petela, Exergy of heat radiation, J. Heat Transf. 86 (1964) 187–192.CrossrefGoogle Scholar

  • [14]

    P. T. Landsberg and J. R. Mallinson, Thermodynamic constraints, effective temperatures and solar cells, in: Coll. Int. sur l’Electricite Solaire. CNES, Toulouse (1976), 27–35.Google Scholar

  • [15]

    W. H. Press, Theoretical maximum for energy from direct and diffuse sunlight, Nature 264 (1976) 734–735.CrossrefGoogle Scholar

  • [16]

    V. Badescu, Is Carnot efficiency the upper bound for work extraction from thermal reservoirs? Europhys. Lett. 106 (2014), 18006.Web of ScienceCrossrefGoogle Scholar

  • [17]

    V. Badescu, How much work can be extracted from a radiation reservoir? Physica A 410 (2014) 110–119.CrossrefWeb of ScienceGoogle Scholar

  • [18]

    V. Badescu, Maximum reversible work extraction from a blackbody radiation reservoir. A way to closing the old controversy, Europhys. Lett. 109 (2015), 40008.CrossrefWeb of ScienceGoogle Scholar

  • [19]

    V. Badescu, On the thermodynamics of the conversion of the diluted and un-diluted black-body radiation, Space Power 9 (1990), 317–322.Google Scholar

  • [20]

    V. Badescu, Accurate upper bound for the efficiency of converting solar energy into work, J. Phys. D, Appl. Phys. 31 (1998), 820–825.CrossrefGoogle Scholar

  • [21]

    V. Badescu, Accurate upper bounds for the conversion efficiency of black-body radiation energy into work, Phys. Lett. A 244 (1998), 31–34.CrossrefGoogle Scholar

  • [22]

    P. T. Landsberg and G. Tonge, Thermodynamic energy conversion efficiencies, J. Appl. Phys. 51 (1980), R1–R20.Google Scholar

  • [23]

    V. Badescu, Thermodynamics of photovoltaics, Reference Module in Earth Syst. Environ. Sci., Elsevier, 2017; DOI: .CrossrefGoogle Scholar

  • [24]

    G. L. Stephens and D. M. O’ Brien, Entropy and climate. I: ERBE observations of the entropy production, Q. J. R. Meteorol. Soc. 119 (1993), 121–152.CrossrefGoogle Scholar

  • [25]

    K. Fong, T. Jefferson, T. Suyehiro and L. Walton, Guide to the SLATEC Common Mathematical Library. Lawrence Livermore National Laboratory, April 10, 1990.Google Scholar

  • [26]

    TableCurve 2D v5.01 for Windows, 2002, SYSTAT Software Inc., 1735 Technology Drive, Suite 430. San Jose.

  • [27]

    S. Kabelac and R. Conrad, Entropy generation during the interaction of thermal radiation with a surface, Entropy 14 (2012), 717–735.Web of ScienceCrossrefGoogle Scholar

  • [28]

    V. Badescu, Spectrally and angularly selective photothermal and photovoltaic converters under one-sun illumination, J. Phys. D, Appl. Phys. 38 (2005), 2166–2172.CrossrefGoogle Scholar

  • [29]

    P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic and M. Soljacie, Selective solar absorbers, Annu. Rev. Heat Transf., (2012), 231–254, Table 1.Google Scholar

About the article

Received: 2018-02-07

Revised: 2018-03-12

Accepted: 2018-04-03

Published Online: 2018-04-19

Published in Print: 2018-10-25


Citation Information: Journal of Non-Equilibrium Thermodynamics, Volume 43, Issue 4, Pages 273–287, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2018-0004.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in