Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year

IMPACT FACTOR 2017: 1.633
5-year IMPACT FACTOR: 1.642

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.591
Source Normalized Impact per Paper (SNIP) 2017: 1.160

See all formats and pricing
More options …
Volume 43, Issue 4


A New Approach for Semi-Analytical Solution of Cross-plane Phonon Transport in Silicon–Diamond Thin Films

Bekir Sami Yilbas
  • Corresponding author
  • Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rajai Samih Mousa Alassar
  • Mathematics and Statistics Department, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ahmad Yousef Al-Dweik
  • Mathematics and Statistics Department, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Saad Bin Mansoor
Published Online: 2018-08-07 | DOI: https://doi.org/10.1515/jnet-2018-0014


Transient analysis of phonon cross-plane transport across two consecutively placed thin films is considered, and a new approach is introduced to obtain the semi-analytical solution for the equation of phonon radiative transport. The orthogonality properties of trigonometric functions are used in the mathematical analysis. Silicon and diamond thin films are used to resemble the consecutively placed thin films. The films are thermally disturbed from its edges to initiate the phonon transport, and thermal boundary resistance is introduced at the films interface. Equivalent equilibrium temperature is incorporated to quantify the phonon intensity distribution in the films. It is found that the results of the analytical solution agree well with their counterparts obtained from the numerical simulations. Phonon intensity at the film edges and interface reduces significantly due to boundary scattering. The analytical solution captures phonon scattering at boundaries and interface correctly, and provides considerable simplification of the numerical treatment of the equation for phonon radiative transport. It also reduces significantly the numerical efforts required for solving the transient phonon radiative transport equation pertinent to the cross-plan transport across the thin films in terms of program size and run-time.

Keywords: cross-plane phonon transport; thin films; phonon radiative transport; analytical solution


  • [1]

    H. Al-Qahtani and B. S. Yilbas, Closed-form solution of Cattaneo equation including volumetric source in relation to laser short-pulse heating, Can. J. Phys. 89 (2011), no. 7, 761–767.CrossrefWeb of ScienceGoogle Scholar

  • [2]

    M. Lupa, Analytical solution of Cattaneo equation, Sci. Res. Inst. Math. Comput. Sci. 6 (2007), no. 1, 127–132.Google Scholar

  • [3]

    B. S. Yilbas, A. Y. Al-Dweik, N. Al-Aqeeli and H.  M. Al-Qahtani, Analytical solution of Cattaneo and thermal stress equations, in: Laser Pulse Heating of Surfaces and Thermal Stress Analysis. Materials Forming, Machining and Tribology, Springer, Heidelberg (2014), 85–119.Google Scholar

  • [4]

    T. Shin, S. W. Teitelbaum, J. Wolfson, M. Kandyla and K. A. Nelson, Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation, J. Chem. Phys. 143 (2015), paper no. 194705.Web of ScienceGoogle Scholar

  • [5]

    A. Majumdar, Microscale heat conduction in dielectric thin films, J. Heat Transf. 115 (1993), no. 1, 7–16.CrossrefGoogle Scholar

  • [6]

    R. Prasher, Generalized equation of phonon radiative transport, Appl. Phys. Lett. 83 (2003), 48.CrossrefGoogle Scholar

  • [7]

    H. Ali and B. S. Yilbas, Energy transport across the thin films pair with presence of minute vacuum gap at interface, J. Non-Equilib. Thermodyn. 42 (2017), no. 2, 113–131.Web of ScienceGoogle Scholar

  • [8]

    H. Ali and B. S. Yilbas, Phonon transport characteristics across silicon thin film pair: Presence of a gap between the films, J. Non-Equilib. Thermodyn. 40 (2015), no. 3, 153–170.Web of ScienceGoogle Scholar

  • [9]

    S. Bin Mansoor and B. S. Yilbas, Thermal transport across a thin film composite due to laser short-pulse heating, J. Non-Equilib. Thermodyn. 40 (2015), no. 2, 103–1120.Web of ScienceGoogle Scholar

  • [10]

    H. Ali and B. S. Yilbas, Entropy generation in silicon thin film: Influence of film thickness on entropy generation rate, J. Non-Equilib. Thermodyn. 39 (2014), no. 3, 147–158.Web of ScienceGoogle Scholar

  • [11]

    H. Ali and B. S. Yilbas, Influence of heat source size and film thickness on phonon transport in a two-dimensional thin film, J. Non-Equilib. Thermodyn. 39 (2014), no. 2, 79–91.Web of ScienceGoogle Scholar

  • [12]

    H. Ali, B. S. Yilbas, A. Al-Sharafi and A. Ozsunar, Thermal transport in thin dielectric films with minute size aluminum dot in relation to microelectronics, Appl. Therm. Eng. 127 (2017), 1025–1035.Web of ScienceCrossrefGoogle Scholar

  • [13]

    Y. -C. Hua and B. -Y. Cao, Cross-plane heat conduction in nanoporous silicon thin films by phonon Boltzmann transport equation and Monte Carlo simulations, Appl. Therm. Eng. 111 (2017), 1401–1408.Web of ScienceCrossrefGoogle Scholar

  • [14]

    Q. Hao, Y. Xiao and H. Zhao, Analytical model for phonon transport analysis of periodic bulk nanoporous structures, Appl. Therm. Eng. 111 (2017), 1409–1416.Web of ScienceCrossrefGoogle Scholar

  • [15]

    J. P. Setrajcic, S. K. Jacimovski and S. M. Vucenovic, Diffusion of phonons through (along and across) the ultrathin crystalline films, Physica A 486 (2017), 839–848.Web of ScienceCrossrefGoogle Scholar

  • [16]

    S. B. Mansoor and B. S. Yilbas, Phonon transport in a curved aluminum thin film due to laser short pulse irradiation, Opt. Laser Technol. 101 (2018), 107–115.CrossrefWeb of ScienceGoogle Scholar

  • [17]

    X. -P. Luo and H. -L. Yi, A discrete unified gas kinetic scheme for phonon Boltzmann transport equation accounting for phonon dispersion and polarization, Int. J. Heat Mass Transf. 114 (2017), 970–980.Web of ScienceCrossrefGoogle Scholar

  • [18]

    X. Ran, Y. Guo and M. Wang, Interfacial phonon transport with frequency-dependent transmissivity by Monte Carlo simulation, Int. J. Heat Mass Transf. 123 (2018), 616–628.Web of ScienceCrossrefGoogle Scholar

  • [19]

    Y. -X. Zhang, X. -P. Luo, H. -L. Yi and H. -P. Tan, Energy conserving dissipative particle dynamics study of phonon heat transport in thin films, Int. J. Heat Mass Transf. 97 (2016), 279–288.CrossrefWeb of ScienceGoogle Scholar

  • [20]

    B. S. Yilbas and H. Ali, Ballistic phonon and thermal radiation transport across a minute vacuum gap in between aluminum and silicon thin films: Effect of laser repetitive pulses on transport characteristics, Physica B, Condens. Matter 495 (2016), 21–34.CrossrefGoogle Scholar

  • [21]

    S. Bin Mansoor and B. S. Yilbas, Phonon radiative transport in silicon–aluminum thin films: Frequency dependent case, Int. J. Therm. Sci. 57 (2012), 54–62.CrossrefWeb of ScienceGoogle Scholar

  • [22]

    X. Chen, W. Li, L. Xiong, Y. Li and Y. Chen, Ballistic-diffusive phonon heat transport across grain boundaries, Acta Mater. 136 (2017), 355–365.CrossrefWeb of ScienceGoogle Scholar

  • [23]

    Y. Guo and M. Wang, Lattice Boltzmann modeling of phonon transport, J. Comput. Phys. 315 (2016), 1–15.Web of ScienceCrossrefGoogle Scholar

  • [24]

    Q. Liang, Y. -L. He, Q. Ren, Y. -P. Zhou and T. Xie, A detailed study on phonon transport in thin silicon membranes with phononic crystal nanostructures, Appl. Energy (2017), DOI: .CrossrefGoogle Scholar

  • [25]

    S. Bin Mansoor and B. S. Yilbas, Phonon transport in silicon–silicon and silicon–diamond thin films: Consideration of thermal boundary resistance at interface, Physica B, Condens. Matter 406 (2011), no. 11, 2186–2195.CrossrefGoogle Scholar

  • [26]

    B. S. Yilbas and S. Bin Mansoor, Phonon and electron transport in aluminum thin film: Influence of film thickness on electron and lattice temperatures, Physica B, Condens. Matter 407 (2012), no. 24, 4643–4648.CrossrefGoogle Scholar

  • [27]

    Y. Dong, B. -Y. Cao and Z. -Y. Guo, Ballistic–diffusive phonon transport and size induced anisotropy of thermal conductivity of silicon nanofilms, Physica E, Low-Dimens. Syst. Nanostruct. 66 (2015), 1–6.CrossrefGoogle Scholar

  • [28]

    A. Nabovati, D. P. Sellan and C. H. Amon, On the lattice Boltzmann method for phonon transport, J. Comput. Phys. 230 (2011), no. 15, 5864–5876.CrossrefWeb of ScienceGoogle Scholar

  • [29]

    B. S. Yilbas and S. Bin Mansoor, Phonon transport and equivalent equilibrium temperature in thin silicon films, J. Non-Equilib. Thermodyn. 38 (2013), no. 2, 153–174.Web of ScienceGoogle Scholar

  • [30]

    D. Jou, A. Sellitto and V. A. Cimmelli, Phonon temperature and electron temperature in thermoelectric coupling, J. Non-Equilib. Thermodyn. 38 (2013), no. 4, 335–361.Web of ScienceGoogle Scholar

  • [31]

    B. S. Yilbas, A. Al-Dweik, R. S. M. Alassar and S. B. Mansoor, Semi-analytical solution of equation for phonon radiative transport pertinent to thin films, J. Thermophys. Heat Transf. 32 (2018), no. 2, 316–325.CrossrefWeb of ScienceGoogle Scholar

  • [32]

    B. S. Yilbas, A. Y. Dweik and S. B. Mansoor, Non-equilibrium energy transport in a thin metallic film: Analytical solution for radiative transport equation, Physica B 454 (2014), 15–22.Web of ScienceCrossrefGoogle Scholar

  • [33]

    B. S. Yilbas, R. S. M. Alassar, A. Y. Al-Dweik and S. B. Mansoor, Novel analytical approach for solution of radiative transport equation in thin films, J. Thermophys. Heat Transf. (2017), DOI: .CrossrefGoogle Scholar

  • [34]

    B. S. Yilbas, A. Y. Al-Dweik and S. Bin Mansoor, Analytical solution for phonon transport across thin films, J. Non-Equilib. Thermodyn. 38 (2013), no. 4, 377–390.Web of ScienceGoogle Scholar

  • [35]

    B. S. Yilbas and A. Y. Al-Dweik, Analytical solution for non-equilibrium heating of metallic surface: Volumetric and surface heat source considerations, J. Non-Equilib. Thermodyn. 38 (2013), no. 3, 241–258.Web of ScienceGoogle Scholar

  • [36]

    B. S. Yilbas and S. B. Mansour, Lattice phonon and electron temperatures in silicon-aluminum thin films pair: Comparison of Boltzmann equation and modified two-equation model, Transp. Theory Stat. Phys. 42 (2013), no. 1, 21–39.CrossrefGoogle Scholar

  • [37]

    G. Chen, Nanoscale energy conversion and transport, Oxford University Press, 2005. ISBN-13 978-0-19-515942-4, 184.Google Scholar

About the article

Received: 2018-04-19

Revised: 2018-06-19

Accepted: 2018-07-10

Published Online: 2018-08-07

Published in Print: 2018-10-25

Funding Source: King Fahd University of Petroleum and Minerals

Award identifier / Grant number: IN171005

The authors acknowledge support of the Deanship of Scientific Research of King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, for project IN171005 during the course of this work.

Citation Information: Journal of Non-Equilibrium Thermodynamics, Volume 43, Issue 4, Pages 359–372, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2018-0014.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in