[1]

K. Hiemenz, Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten garden Kreiszylinder, *Dinglers Polytech. J.* 326 (1911), 321–324.Google Scholar

[2]

T. R. Mahapatra and A. S. Gupta, Magnetohydrodynamic stagnation point flow towards a stretching sheet, *Acta Mech.* 152 (2001), 191–196.CrossrefGoogle Scholar

[3]

C. Y. Wang, Stagnation flow towards a shrinking sheet, *Int. J. Non-Linear Mech.* 43 (2008), 377–382.Web of ScienceCrossrefGoogle Scholar

[4]

M. J. Babu and N. Sandeep, Effect of nonlinear thermal radiation on non-aligned bio-convective stagnation point flow of a magnetic nanofluid over a stretching sheet, *Alex. Eng. J.* 55 (2016), 1931–1939.Web of ScienceCrossrefGoogle Scholar

[5]

N. Abbas, S. Saleem, S. Nadeem, A. A. Alderremy and A. U. Khan, On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip, *Res. Phys.* 9 (2018), 1224–1232.Google Scholar

[6]

A. Ishak, R. Nazar and I. Pop, Hydrodynamic flow of heat transfer adjacent to a stretching vertical sheet, *Heat Mass Transf.* 44 (2008), 921–927.CrossrefGoogle Scholar

[7]

K. Anantha Kumar, J. V. R. Reddy, V. Sugunamma and N. Sandeep, Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink, *Alex. Eng. J.* 57 (2018), 435–443.CrossrefWeb of ScienceGoogle Scholar

[8]

B. Jalilpour, S. Jafarmadar, M. M. Rashidi, D. D. Ganji, R. Rahime and A. B. Shotorban, MHD non orthogonal stagnation point flow of a nonofluid towards a stretching surface in the presence of thermal radiation, *Ain Shams Eng. J.* (2017), 2090–4479, DOI: .CrossrefGoogle Scholar

[9]

A. C. Eringen, Simple microfluids, *Int. J. Eng. Sci.* 2 (1964), 205–217.CrossrefGoogle Scholar

[10]

R. Nazar, N. Amin, D. FIlip and I. Pop, Stagnation-point flow of a micropolar fluid towards a stretching sheet, *Int. J. Non-Linear Mech.* 39 (2004), 1227–1235.CrossrefGoogle Scholar

[11]

G. K. Ramesh, B. J. Gireesha, T. Hayat and A. Alsaedi, Stagnation point flow of Maxwell fluid towards a permeable surface in the presence of nanoparticles, *Alex. Eng. J.* 55 (2016), no. 2, 857–865.Web of ScienceCrossrefGoogle Scholar

[12]

S. Nadeem, Z. Ahmad and S. Saleem, The effect of variable viscosities on micropolar flow of two nanofluids, *Z. Naturforsch.* 71 (2016), no. 12, 1121–1129.Web of ScienceGoogle Scholar

[13]

T. Hayat, S. Farooq, B. Ahmad and A. Alsaedi, Peristalsis of Eyring-Powell magneto nanomaterial considering Darcy-Forchheimer relation, *Int. J. Heat Mass Transf.* 115 (2017), 694–702.Web of ScienceCrossrefGoogle Scholar

[14]

T. Hayat, S. Farooq and A. Alsaedi, MHD peristaltic flow in a curved channel with convective condition, *J. Mech.* 33 (2017), no. 4, 483–499.Web of ScienceCrossrefGoogle Scholar

[15]

T. Hayat, S. Makhdoom, M. Awais, S. Saleem and M. M. Rashid, Axisymmetric Powell-Eyring fluid flow with convective boundary condition: optimal analysis, *Appl. Math. Mech.* 37 (2016), no. 7, 919–928.CrossrefWeb of ScienceGoogle Scholar

[16]

S. Farooq, T. Hayat, B. Ahmad and A. Alsaedi, MHD flow of Eyring–Powell liquid in convectively curved configuration, *J. Braz. Soc. Mech. Sci. Eng.* 40 (2018), no. 3, 1–14.Web of ScienceGoogle Scholar

[17]

S. Farooq, A. Alsaedi, T. Hayat and B. Ahmad, Peristaltic transport of Johnson–Segalman fluid with homogeneous–heterogeneous reactions: a numerical analysis, *J. Braz. Soc. Mech. Sci. Eng.* 40 (2018), no. 5 242 (1–11).Web of ScienceGoogle Scholar

[18]

K. B. Lakshmi, K. Anantha Kumar, J. V. R. Reddy and V. Sugunamma, Influence of nonlinear radiation and cross diffusion on MHD flow of Casson and Walters-B nanofluids past a variable thickness sheet, *J. Nanofluids* 8 (2019), 73–83.Web of ScienceCrossrefGoogle Scholar

[19]

Y. Y. Lok, I. Pop and A. J. Chamkha, Non-orthogonal stagnation-point flow of a micropolar fluid, *Int. J. Eng. Sci.* 45 (2007), 173–184.CrossrefWeb of ScienceGoogle Scholar

[20]

F. Lobropulu, D. Li and I. Pop, Non-orthogonal stagnation point flow towards a stretching surface in a non-Newtonian fluid with heat transfer, *Int. J. Therm. Sci.* 49 (2010), 1042–1050.CrossrefWeb of ScienceGoogle Scholar

[21]

R. Mehmood, S. Nadeem and N. S. Akbar, Non-aligned ethylene-glycol 30 % based stagnation point fluid over a stretching surface with hematite nano particles, *J. Appl. Fluid Mech.* 9 (2016), no. 3, 1359–1366.CrossrefGoogle Scholar

[22]

R. Mehmood, S. Nadeem, S. Saleem and N. S. Akbar, Flow and heat transfer analysis of Jeffery nano fluid impinging obliquely over a stretched plate, *J. Taiwan Inst. Chem. Eng.* 74 (2017), 49–58.CrossrefWeb of ScienceGoogle Scholar

[23]

M. A. Seddeek, Flow of a magneto-micropolar fluid past a continuously moving plate, *Phys. Lett. A* 306 (2003), 255–257.CrossrefGoogle Scholar

[24]

T. Hayat, T. Javed and Z. Abbas, MHD flow of a micropolar fluid near a stagnation point towards a non-linear stretching surface, *Nonlinear Anal., Real World Appl.* 10 (2009), 1514–1526.CrossrefWeb of ScienceGoogle Scholar

[25]

M. Ashraf and M. M. Ashraf, MHD stagnation point flow of a micropolar fluid towards a heated surface, *Appl. Math. Mech.* 32 (2011), no. 1, 45–54.Web of ScienceCrossrefGoogle Scholar

[26]

N. Sandeep, A. J. Chamkha and I. L. Aniamasaun, Numerical exploration of magnetohydrodynamic nanofluid flow suspended with magnetite nanoparticles, *J. Braz. Soc. Mech. Sci. Eng.* 39 (2017), 3635–3644.CrossrefWeb of ScienceGoogle Scholar

[27]

T. Hayat, S. Farooq, B. Ahmad and A. Alsaedi, Characteristics of convective heat transfer in the MHD peristalsis of Carreau fluid with Joule heating, *AIP Adv.* 6 (2014), no. 4, 045302.Web of ScienceGoogle Scholar

[28]

S. Farooq, M. Awais, M. Naseem, T. Hayat and B. Ahmad, Magnetohydrodynamic peristalsis of variable viscosity Jeffrey liquid with heat and mass transfer, *Nucl. Eng. Technol.* 49 (2017), no. 7, 1396–1404.Web of ScienceCrossrefGoogle Scholar

[29]

H. S. Takhar, R. S. Agarwal, R. Bhargava and S. Jain, Mixed convection flow of a micropolar fluid over a stretching sheet, *Heat Mass Transf.* 34 (1998), 213–219.CrossrefGoogle Scholar

[30]

E. M. A. Eldahab and A. F. Ghonaim, Convective heat transfer in an electrically conduction micropolar fluid at a stretching surface with uniform free stream, *Appl. Math. Comp.* 137 (2003), 323–336.CrossrefGoogle Scholar

[31]

M. Waqas, M. Farooq, M. I. Khan, A. Alsaedi, T. Hayat and T. Yasmeen, Magnetohydrodynamic (MHD) mixed convective flow of micropolr liquid due to non-linear stretched sheet with convective condition, *Int. J. Heat Mass Transf.* 102 (2016), 762–772.Google Scholar

[32]

R. Tabassum, R. Mehmood and N. S. Akbar, Magnetite micropolar nanofluid non-aligned MHD flow with mixed convection, *Eur. Phys. J. Plus* 132 (2017), DOI: .CrossrefWeb of ScienceGoogle Scholar

[33]

M. Sheikholeslami, A. Ghasemi, Z. Li, A. Shafee and S. Saleem, Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term, *Int. J. Heat Mass Transf.* 126 (2018), 1252–1264.Web of ScienceCrossrefGoogle Scholar

[34]

M. Farooq, M. I. Khan, M. Waqas, T. Hayat, A. Alsaedi and M. I. Khan, MHD stagnation point flow of viscoelastic nanofluid with nonlinear radiation effects, *J. Mol. Liq.* 221 (2016), 1097–1103.CrossrefGoogle Scholar

[35]

J. V. R. Reddy, V. Sugunamma and N. Sandeep, Effect of frictional heating on radiative ferrofluid flow over a slendering stretching sheet with aligned magnetic field, *Eur. Phys. J. Plus* 132 (2017).Web of ScienceGoogle Scholar

[36]

F. A. Soomroa, R. U. Haq, Q. M. A. Mdallac and Q. Zhan, Heat generation/absorption and nonlinear radiation effects on stagnation point flow of nanoliquid along a moving surface, *Res. Phys.* 8 (2018), 404–414.Google Scholar

[37]

K. Anantha Kumar, J. V. R. Reddy, V. Sugunamma and N. Sandeep, Impact of cross diffusion on MHD viscoelastic fluid flow past a melting surface with exponential heat source, *Multi. Mod. Mat. Str.* (2018), DOI: .CrossrefGoogle Scholar

[38]

C. S. K. Raju, S. Saleem, S. U. Mamatha and I. Hussain, Heat and mass transport phenomena of radiated slender body of three revolutions with saturated porous: Buongiorno’s model, *Int. J. Therm. Sci.* 132 (2018), 309–315.Web of ScienceCrossrefGoogle Scholar

[39]

Z. Li, M. Sheikholeslami, A. J. Chamkha, Z. A. Raizah and S. Saleem, Control volume finite element method for nanofluid MHD natural convective flow inside a sinusoidal annulus under the impact of thermal radiation, *Comput. Methods Appl. Mech. Eng.* 338 (2018), 618–633.Web of ScienceCrossrefGoogle Scholar

[40]

S. Saleem, S. Nadeem, M. M. Rashidi and C. S. K. Raju, An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source, *Microsyst. Technol.* (2018) 1–7.Google Scholar

[41]

N. Sandeep and C. Sulochana, Dual solutions for unsteady mixed convective flow of MHD micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink, *Int. J. Eng. Sci. Technol.* 18 (2015), 738–745.CrossrefGoogle Scholar

[42]

B. Ramandevi, J. V. R. Reddy, V. Sugunamma and N. Sandeep, Combined influence of viscous dissipation and non-uniform heat source/sink on MHD non-Newtonian fluid flow with Cattaneo-Christov heat flux, *Alex. Eng. J.* (2017), DOI: .CrossrefGoogle Scholar

[43]

J. V. R. Reddy, K. Anantha Kumar, V. Sugunamma and N. Sandeep, Effect of cross diffusion on MHD non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink: A comparative study, *Alex. Eng. J.* (2017), DOI: .CrossrefGoogle Scholar

[44]

K. Anantha Kumar, J. V. R. Reddy, V. Sugunamma and N. Sandeep, Impact of frictional heating on MHD radiative ferrofluid past a convective shrinking surface, Def. Diff, *Forum* 378 (2017), 157–174.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.