Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year

IMPACT FACTOR 2017: 1.633
5-year IMPACT FACTOR: 1.642

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.591
Source Normalized Impact per Paper (SNIP) 2017: 1.160

See all formats and pricing
More options …
Volume 43, Issue 4


Impact of Non-linear Radiation on MHD Non-aligned Stagnation Point Flow of Micropolar Fluid Over a Convective Surface

Anantha Kumar K. / Sugunamma V. / Sandeep N.
Published Online: 2018-08-18 | DOI: https://doi.org/10.1515/jnet-2018-0022


We aimed at examining the magnetohydrodynamic (MHD) radiative non-aligned stagnation point motion of non-Newtonian liquid over a stretched surface. The heat transfer mechanism is investigated in the presence of variable heat sink/source, non-linear Rosseland approximation and Biot number. Appropriate transmutations are exploited to metamorphose the flow equations into ODEs. The acquired non-linear ODEs are highly coupled. These are tackled with the consecutive implication of fourth-order Runge–Kutta and shooting techniques. The variations of flow governing parameters on the dimensionless velocity, micro-rotation and temperature plus the measure of heat transport, couple stress coefficient and friction factor are thoroughly explained using plots and tables. Outcomes stipulate that increasing the values of the stretching ratio parameter causes the thermal field to decline and the velocity field to inflate. Also, an upsurge in the micropolar parameter produces an increase in the rate of heat transport but an opposite outcome is detected with the couple stress coefficient. To the best of our knowledge the non-orthogonal stagnated motion of micropolar liquid with radiation as non-linear and variable heat source/sink has never before been scrutinized.

Keywords: MHD; convection; micropolar fluid; variable heat source/sink; non-aligned stagnation point flow; convective surface


  • [1]

    K. Hiemenz, Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten garden Kreiszylinder, Dinglers Polytech. J. 326 (1911), 321–324.Google Scholar

  • [2]

    T. R. Mahapatra and A. S. Gupta, Magnetohydrodynamic stagnation point flow towards a stretching sheet, Acta Mech. 152 (2001), 191–196.CrossrefGoogle Scholar

  • [3]

    C. Y. Wang, Stagnation flow towards a shrinking sheet, Int. J. Non-Linear Mech. 43 (2008), 377–382.Web of ScienceCrossrefGoogle Scholar

  • [4]

    M. J. Babu and N. Sandeep, Effect of nonlinear thermal radiation on non-aligned bio-convective stagnation point flow of a magnetic nanofluid over a stretching sheet, Alex. Eng. J. 55 (2016), 1931–1939.Web of ScienceCrossrefGoogle Scholar

  • [5]

    N. Abbas, S. Saleem, S. Nadeem, A. A. Alderremy and A. U. Khan, On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip, Res. Phys. 9 (2018), 1224–1232.Google Scholar

  • [6]

    A. Ishak, R. Nazar and I. Pop, Hydrodynamic flow of heat transfer adjacent to a stretching vertical sheet, Heat Mass Transf. 44 (2008), 921–927.CrossrefGoogle Scholar

  • [7]

    K. Anantha Kumar, J. V. R. Reddy, V. Sugunamma and N. Sandeep, Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink, Alex. Eng. J. 57 (2018), 435–443.CrossrefWeb of ScienceGoogle Scholar

  • [8]

    B. Jalilpour, S. Jafarmadar, M. M. Rashidi, D. D. Ganji, R. Rahime and A. B. Shotorban, MHD non orthogonal stagnation point flow of a nonofluid towards a stretching surface in the presence of thermal radiation, Ain Shams Eng. J. (2017), 2090–4479, DOI: .CrossrefGoogle Scholar

  • [9]

    A. C. Eringen, Simple microfluids, Int. J. Eng. Sci. 2 (1964), 205–217.CrossrefGoogle Scholar

  • [10]

    R. Nazar, N. Amin, D. FIlip and I. Pop, Stagnation-point flow of a micropolar fluid towards a stretching sheet, Int. J. Non-Linear Mech. 39 (2004), 1227–1235.CrossrefGoogle Scholar

  • [11]

    G. K. Ramesh, B. J. Gireesha, T. Hayat and A. Alsaedi, Stagnation point flow of Maxwell fluid towards a permeable surface in the presence of nanoparticles, Alex. Eng. J. 55 (2016), no. 2, 857–865.Web of ScienceCrossrefGoogle Scholar

  • [12]

    S. Nadeem, Z. Ahmad and S. Saleem, The effect of variable viscosities on micropolar flow of two nanofluids, Z. Naturforsch. 71 (2016), no. 12, 1121–1129.Web of ScienceGoogle Scholar

  • [13]

    T. Hayat, S. Farooq, B. Ahmad and A. Alsaedi, Peristalsis of Eyring-Powell magneto nanomaterial considering Darcy-Forchheimer relation, Int. J. Heat Mass Transf. 115 (2017), 694–702.Web of ScienceCrossrefGoogle Scholar

  • [14]

    T. Hayat, S. Farooq and A. Alsaedi, MHD peristaltic flow in a curved channel with convective condition, J. Mech. 33 (2017), no. 4, 483–499.Web of ScienceCrossrefGoogle Scholar

  • [15]

    T. Hayat, S. Makhdoom, M. Awais, S. Saleem and M. M. Rashid, Axisymmetric Powell-Eyring fluid flow with convective boundary condition: optimal analysis, Appl. Math. Mech. 37 (2016), no. 7, 919–928.CrossrefWeb of ScienceGoogle Scholar

  • [16]

    S. Farooq, T. Hayat, B. Ahmad and A. Alsaedi, MHD flow of Eyring–Powell liquid in convectively curved configuration, J. Braz. Soc. Mech. Sci. Eng. 40 (2018), no. 3, 1–14.Web of ScienceGoogle Scholar

  • [17]

    S. Farooq, A. Alsaedi, T. Hayat and B. Ahmad, Peristaltic transport of Johnson–Segalman fluid with homogeneous–heterogeneous reactions: a numerical analysis, J. Braz. Soc. Mech. Sci. Eng. 40 (2018), no. 5 242 (1–11).Web of ScienceGoogle Scholar

  • [18]

    K. B. Lakshmi, K. Anantha Kumar, J. V. R. Reddy and V. Sugunamma, Influence of nonlinear radiation and cross diffusion on MHD flow of Casson and Walters-B nanofluids past a variable thickness sheet, J. Nanofluids 8 (2019), 73–83.Web of ScienceCrossrefGoogle Scholar

  • [19]

    Y. Y. Lok, I. Pop and A. J. Chamkha, Non-orthogonal stagnation-point flow of a micropolar fluid, Int. J. Eng. Sci. 45 (2007), 173–184.CrossrefWeb of ScienceGoogle Scholar

  • [20]

    F. Lobropulu, D. Li and I. Pop, Non-orthogonal stagnation point flow towards a stretching surface in a non-Newtonian fluid with heat transfer, Int. J. Therm. Sci. 49 (2010), 1042–1050.CrossrefWeb of ScienceGoogle Scholar

  • [21]

    R. Mehmood, S. Nadeem and N. S. Akbar, Non-aligned ethylene-glycol 30 % based stagnation point fluid over a stretching surface with hematite nano particles, J. Appl. Fluid Mech. 9 (2016), no. 3, 1359–1366.CrossrefGoogle Scholar

  • [22]

    R. Mehmood, S. Nadeem, S. Saleem and N. S. Akbar, Flow and heat transfer analysis of Jeffery nano fluid impinging obliquely over a stretched plate, J. Taiwan Inst. Chem. Eng. 74 (2017), 49–58.CrossrefWeb of ScienceGoogle Scholar

  • [23]

    M. A. Seddeek, Flow of a magneto-micropolar fluid past a continuously moving plate, Phys. Lett. A 306 (2003), 255–257.CrossrefGoogle Scholar

  • [24]

    T. Hayat, T. Javed and Z. Abbas, MHD flow of a micropolar fluid near a stagnation point towards a non-linear stretching surface, Nonlinear Anal., Real World Appl. 10 (2009), 1514–1526.CrossrefWeb of ScienceGoogle Scholar

  • [25]

    M. Ashraf and M. M. Ashraf, MHD stagnation point flow of a micropolar fluid towards a heated surface, Appl. Math. Mech. 32 (2011), no. 1, 45–54.Web of ScienceCrossrefGoogle Scholar

  • [26]

    N. Sandeep, A. J. Chamkha and I. L. Aniamasaun, Numerical exploration of magnetohydrodynamic nanofluid flow suspended with magnetite nanoparticles, J. Braz. Soc. Mech. Sci. Eng. 39 (2017), 3635–3644.CrossrefWeb of ScienceGoogle Scholar

  • [27]

    T. Hayat, S. Farooq, B. Ahmad and A. Alsaedi, Characteristics of convective heat transfer in the MHD peristalsis of Carreau fluid with Joule heating, AIP Adv. 6 (2014), no. 4, 045302.Web of ScienceGoogle Scholar

  • [28]

    S. Farooq, M. Awais, M. Naseem, T. Hayat and B. Ahmad, Magnetohydrodynamic peristalsis of variable viscosity Jeffrey liquid with heat and mass transfer, Nucl. Eng. Technol. 49 (2017), no. 7, 1396–1404.Web of ScienceCrossrefGoogle Scholar

  • [29]

    H. S. Takhar, R. S. Agarwal, R. Bhargava and S. Jain, Mixed convection flow of a micropolar fluid over a stretching sheet, Heat Mass Transf. 34 (1998), 213–219.CrossrefGoogle Scholar

  • [30]

    E. M. A. Eldahab and A. F. Ghonaim, Convective heat transfer in an electrically conduction micropolar fluid at a stretching surface with uniform free stream, Appl. Math. Comp. 137 (2003), 323–336.CrossrefGoogle Scholar

  • [31]

    M. Waqas, M. Farooq, M. I. Khan, A. Alsaedi, T. Hayat and T. Yasmeen, Magnetohydrodynamic (MHD) mixed convective flow of micropolr liquid due to non-linear stretched sheet with convective condition, Int. J. Heat Mass Transf. 102 (2016), 762–772.Google Scholar

  • [32]

    R. Tabassum, R. Mehmood and N. S. Akbar, Magnetite micropolar nanofluid non-aligned MHD flow with mixed convection, Eur. Phys. J. Plus 132 (2017), DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [33]

    M. Sheikholeslami, A. Ghasemi, Z. Li, A. Shafee and S. Saleem, Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term, Int. J. Heat Mass Transf. 126 (2018), 1252–1264.Web of ScienceCrossrefGoogle Scholar

  • [34]

    M. Farooq, M. I. Khan, M. Waqas, T. Hayat, A. Alsaedi and M. I. Khan, MHD stagnation point flow of viscoelastic nanofluid with nonlinear radiation effects, J. Mol. Liq. 221 (2016), 1097–1103.CrossrefGoogle Scholar

  • [35]

    J. V. R. Reddy, V. Sugunamma and N. Sandeep, Effect of frictional heating on radiative ferrofluid flow over a slendering stretching sheet with aligned magnetic field, Eur. Phys. J. Plus 132 (2017).Web of ScienceGoogle Scholar

  • [36]

    F. A. Soomroa, R. U. Haq, Q. M. A. Mdallac and Q. Zhan, Heat generation/absorption and nonlinear radiation effects on stagnation point flow of nanoliquid along a moving surface, Res. Phys. 8 (2018), 404–414.Google Scholar

  • [37]

    K. Anantha Kumar, J. V. R. Reddy, V. Sugunamma and N. Sandeep, Impact of cross diffusion on MHD viscoelastic fluid flow past a melting surface with exponential heat source, Multi. Mod. Mat. Str. (2018), DOI: .CrossrefGoogle Scholar

  • [38]

    C. S. K. Raju, S. Saleem, S. U. Mamatha and I. Hussain, Heat and mass transport phenomena of radiated slender body of three revolutions with saturated porous: Buongiorno’s model, Int. J. Therm. Sci. 132 (2018), 309–315.Web of ScienceCrossrefGoogle Scholar

  • [39]

    Z. Li, M. Sheikholeslami, A. J. Chamkha, Z. A. Raizah and S. Saleem, Control volume finite element method for nanofluid MHD natural convective flow inside a sinusoidal annulus under the impact of thermal radiation, Comput. Methods Appl. Mech. Eng. 338 (2018), 618–633.Web of ScienceCrossrefGoogle Scholar

  • [40]

    S. Saleem, S. Nadeem, M. M. Rashidi and C. S. K. Raju, An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source, Microsyst. Technol. (2018) 1–7.Google Scholar

  • [41]

    N. Sandeep and C. Sulochana, Dual solutions for unsteady mixed convective flow of MHD micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink, Int. J. Eng. Sci. Technol. 18 (2015), 738–745.CrossrefGoogle Scholar

  • [42]

    B. Ramandevi, J. V. R. Reddy, V. Sugunamma and N. Sandeep, Combined influence of viscous dissipation and non-uniform heat source/sink on MHD non-Newtonian fluid flow with Cattaneo-Christov heat flux, Alex. Eng. J. (2017), DOI: .CrossrefGoogle Scholar

  • [43]

    J. V. R. Reddy, K. Anantha Kumar, V. Sugunamma and N. Sandeep, Effect of cross diffusion on MHD non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink: A comparative study, Alex. Eng. J. (2017), DOI: .CrossrefGoogle Scholar

  • [44]

    K. Anantha Kumar, J. V. R. Reddy, V. Sugunamma and N. Sandeep, Impact of frictional heating on MHD radiative ferrofluid past a convective shrinking surface, Def. Diff, Forum 378 (2017), 157–174.Google Scholar

About the article

Received: 2018-05-26

Revised: 2018-07-21

Accepted: 2018-07-26

Published Online: 2018-08-18

Published in Print: 2018-10-25

Citation Information: Journal of Non-Equilibrium Thermodynamics, Volume 43, Issue 4, Pages 327–345, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2018-0022.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in