Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year


IMPACT FACTOR 2017: 1.633
5-year IMPACT FACTOR: 1.642

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.591
Source Normalized Impact per Paper (SNIP) 2017: 1.160

Online
ISSN
1437-4358
See all formats and pricing
More options …
Volume 43, Issue 4

Issues

Modeling Reaction Kinetics of Twin Polymerization via Differential Scanning Calorimetry

Janett Prehl / Robin Masser / Peter Salamon / Karl Heinz Hoffmann
Published Online: 2018-09-19 | DOI: https://doi.org/10.1515/jnet-2018-0057

Abstract

We present a kinetic model for the reaction mechanism of acid-catalyzed twin polymerization. Our model characterizes the reaction mechanism not by the reactants, intermediate structures, and products, but via reaction-relevant moieties. We apply our model for three different derivatives of 2,2’-Spirobi[4H-1,3,2-benzodioxasiline] and determine activation energies, reaction enthalpies, and reaction rate constants for the reaction steps in our mechanism. We compare our findings to previously reported values obtained from density functional theory calculations. Furthermore, with this approach we are also able to follow the time development of the concentrations of the reaction-relevant moieties.

Keywords: reaction kinetic theory; twin polymerization; differential equation system; differential scanning calorimetry

References

  • [1]

    S. Grund, P. Kempe, G. Baumann, A. Seifert and S. Spange, Zwillingspolymerisation: ein Weg zur Synthese von Nanokompositen, Angew. Chem. 119 (2007), no. 4, 636–640.CrossrefGoogle Scholar

  • [2]

    T. Ebert, A. Seifert and S. Spange, Twin polymerization – a new principle for hybrid material synthesis, Macromol. Rapid Commun. 36 (2015), 1623–1639, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [3]

    S. Spange and S. Grund, Nanostructured organic–inorganic composite materials by twin polymerization of hybrid monomers, Adv. Mater. 21 (2009), 2111–2116.CrossrefWeb of ScienceGoogle Scholar

  • [4]

    T. Ebert, G. Cox, E. Sheremet, O. Gordan, D. R. T. Zahn, F. Simon, et al., Carbon/carbon nanocomposites fabricated by base catalyzed twin polymerization of a si-spiro compound on graphite sheets, Chem. Commun. (Cambrigde, U.K.) 48 (2012), 9867–9869.CrossrefGoogle Scholar

  • [5]

    P. Kempe, T. Löschner, A. A. Auer, A. Seifert, C. Gerhard and S. Spange, Thermally induced twin polymerization of 4h-1,3,2-benzodioxasilines, Chem. Eur. J. 20 (2014), 8040–8053. Includes supporting files via http://dx.doi.org/10.1002/chem.201400038.Web of ScienceCrossrefGoogle Scholar

  • [6]

    S. Spange, P. Kempe, A. Seifert, A. A. Auer, P. Ecorchard, H. Lang, et al., Nanocomposites with sturcture domains of 0.5 to 3 nm by polymerization of silicon spiro compounds, Angew. Chem., Int. Ed. Engl. 48 (2009), no. 44, 8254–8258.CrossrefGoogle Scholar

  • [7]

    J. Brückner, S. Thieme, F. Böttger-Hiller, I. Bauer, H. T. Grossmann, P. Strubel, et al., Carbon-based anodes for lithium sulfur full cells with high cycle stability, Adv. Funct. Mater. 24 (2014), 1284–1289.Web of ScienceCrossrefGoogle Scholar

  • [8]

    P. Kitschke, A. A. Auer, T. Löschner, A. Seifert, S. Spange, T. Rüffner, et al., Microporous carbon and mesoporous silica by use of twin polymerization: an integrated experimental and theoretical approach to precursor reactivity, ChemPlusChem 79 (2014), no. 7, 1009–1023.Web of ScienceCrossrefGoogle Scholar

  • [9]

    P. Kempe, T. Löschner, D. Adner and S. Spange, Selective ring opening of 4H-1,3,2-benzodioxasiline twin monomers, New J. Chem. 35 (2011), no. 12, 2735–2739.CrossrefWeb of ScienceGoogle Scholar

  • [10]

    T. Löschner, A. Mehner, S. Grund, A. Seifert, A. Pohlers, A. Lange, et al., Ansatz, Herstellung, Hybridmaterialien, Zwillingspolymerisation (see: “Ein modularer Ansatz zur gezielten Herstellung nanostrukturierter Hybridmaterialien: die simultane Zwillingspolymerisation”), Angew. Chem. 124 (2012), no. 13, 3312–3315.CrossrefGoogle Scholar

  • [11]

    A. Richter, Berechnung, Spirosiliciumzwillingsmonomeren (see “Quantenchemische Berechnung zu Spirosiliciumzwillingsmonomeren”), Diploma thesis, TU Chemnitz, 09107 Chemnitz, July 2010.Google Scholar

  • [12]

    A. A. Auer, A. Richter, A. V. Berezkin, D. V. Guseva and S. Spange, Theoretical study of twin polymerization – from chemical reactivity to structure formation, Macromol. Theory Simul. 21 (2012), no. 9, 615–628.CrossrefWeb of ScienceGoogle Scholar

  • [13]

    I. Tchernook, J. Prehl and J. Friedrich, Quantum chemical investigation of the counter anion in the acid catalyzed initiation of 2,2’-spirobi[4h-1,3,2-benzodioxasiline] polymerization, Polymer 60 (2015), 241–251.CrossrefWeb of ScienceGoogle Scholar

  • [14]

    J. Prehl, T. Schönfelder, J. Friedrich and K. H. Hoffmann, Site dependent atom type ReaxFF for the proton-catalyzed twin polymerization, J. Phys. Chem. C 121 (2017), no. 29, 15984–15992.CrossrefWeb of ScienceGoogle Scholar

  • [15]

    K. H. Hoffmann and J. Prehl, Modeling the structure formation process of twin polymerization, Reac. Kinet. Mech. Cat. 123 (2018), 367–383.CrossrefGoogle Scholar

  • [16]

    M. Abd-Elghany, T. M. Klapötke, A. Elbeih and S. Zeman, Investigation of different thermal analysis techniques to determine the decomposition kinetics of ϵ-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane with reduced sensitivity and its cured pbx, J. Anal. Appl. Pyrolysis 126 (2017), 267–274.CrossrefWeb of ScienceGoogle Scholar

  • [17]

    A. Fernández, M. Ruiz-Bermejoa and J. L. de la Fuente, Modelling the kinetics and structural property evolution of a versatile reaction: aqueous HCN polymerization, Phys. Chem. Chem. Phys. 20 (2018) 17353–17366, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [18]

    G. Gee and H. W. Melville, The kinetics of polymerization reactions, Rubber Chem. Technol. 18 (1945), no. 2, 223–235.CrossrefGoogle Scholar

  • [19]

    P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, 1953.Google Scholar

  • [20]

    V. I. Irzhak, M. L. Tai, N. I. Peregudov and T. F. Irzhak, Concept of bond blocks in the kinetics of polycondensation processes, Colloid Polym. Sci. 272 (1994), 523–529.CrossrefGoogle Scholar

  • [21]

    F. R. Mayo and F. M. Lewis, Copolymerization. i. A basis for comparing the behavior of monomers in copolymerization; the copolymerization of styrene and methyl methacrylate, J. Am. Chem. Soc. 66 (1944), no. 9, 1594–1601.CrossrefGoogle Scholar

  • [22]

    A. G. Mikos, C. G. Takoudis and N. A. Peppas, Kinetic modeling of copolymerization/cross-linking reactions, Macromolecules 19 (1986), 2174–2182.CrossrefGoogle Scholar

  • [23]

    F. T. Özaltin, B. Dereli, Ö. Karahan, S. Salman and V. Aviyente, Solvent effects on free-radical copolymerization of styrene and 2-hydroxyethyl methacrylate: a dft study, New J. Chem. 38 (2014), 170–178.Web of ScienceCrossrefGoogle Scholar

  • [24]

    S. R. Logan, The origin and status of the arrhenius equation, J. Chem. Educ. 59 (1982), no. 4, 279–281.CrossrefGoogle Scholar

About the article

Received: 2018-09-10

Accepted: 2018-09-10

Published Online: 2018-09-19

Published in Print: 2018-10-25


Funding Source: Deutsche Forschungsgemeinschaft

Award identifier / Grant number: PR 1507/1

J. P. thanks the German Research Foundation (DFG) for financial support received within the “FOR 1497: Twin-Polymerisation of Organic–Inorganic Hybrid Monomers to Nanocomposites” (PR 1507/1).


Citation Information: Journal of Non-Equilibrium Thermodynamics, Volume 43, Issue 4, Pages 347–357, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2018-0057.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in