Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Paul, Raphael

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel


IMPACT FACTOR 2018: 2.083

CiteScore 2018: 1.84

SCImago Journal Rank (SJR) 2018: 0.564
Source Normalized Impact per Paper (SNIP) 2018: 0.876

Online
ISSN
1437-4358
See all formats and pricing
More options …
Volume 44, Issue 4

Issues

Thermodynamic Merger of Fluctuation Theorem and Principle of Least Action: Case of Rayleigh–Taylor Instability

Shripad P. Mahulikar
  • Corresponding author
  • Department of Aerospace Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tapan K. Sengupta / Nidhi Sharma / Pallavi Rastogi
  • Department of Aerospace Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-06-07 | DOI: https://doi.org/10.1515/jnet-2018-0091

Abstract

Entropy fluctuations with time occur in finite-sized time-evolving dissipative systems. There is a need to comprehend the role of these fluctuations on the fluctuations-averaged entropy generation rate, over a large enough observation time interval. In this non-equilibrium thermodynamic investigation, the Fluctuation Theorem (FT) and Principle of Least Action are re-visited to articulate their implications for dissipative systems. The Principle of Maximum Entropy Production (MaxEP: the entropy generation rate of a dissipative system is maximized by paths of least action) is conceptually identified as the Principle of Least Action for dissipative systems. A Thermodynamic Fusion Theorem that merges the FT and the MaxEP is introduced for addressing the role of fluctuations in entropy production. It identifies “entropy fluctuations” as the “least-action path” for maximizing the time-averaged entropy production in a dissipative system. The validity of this introduced theorem is demonstrated for the case of entropy fluctuations in Rayleigh–Taylor flow instability.

Keywords: dissipative systems; entropy fluctuations; maximum entropy principle; extremal principles; Fluctuation Theorem; least-action principle

References

  • [1]

    E. C. Kemble, Fluctuations, thermodynamic equilibrium and entropy, Phys. Rev. 56 (1939), 1013–1023.CrossrefGoogle Scholar

  • [2]

    G. E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E 60 (1999), no. 3, 2721–2726.CrossrefGoogle Scholar

  • [3]

    D. J. Evans, E. G. D. Cohen and G. P. Morriss, Probability of second law violations in shearing steady states, Phys. Rev. Lett. 71 (1993), no. 15, 2401–2404.CrossrefGoogle Scholar

  • [4]

    D. J. Evans and D. J. Searles, Causality, response theory, and the second law of thermodynamics, Phys. Rev. E 53 (1996), no.  6, 5808–5815.CrossrefGoogle Scholar

  • [5]

    D. J. Evans and D. J. Searles, The fluctuation theorem, Adv. Phys. 51 (2002), no. 7, 1529–1585.CrossrefGoogle Scholar

  • [6]

    C. Bustamante, J. Liphardt and F. Ritort, The nonequilibrium thermodynamics of small systems, Phys. Today 58 (2005), no. 7, 43–48.CrossrefGoogle Scholar

  • [7]

    I. Prigogine and P. Glansdorff, Variational properties and fluctuation theory, Physica 31 (1965), no. 8, 1242–1256.CrossrefGoogle Scholar

  • [8]

    G. Nicolis and I. Prigogine, Fluctuations in non-equilibrium systems, Proc. Natl. Acad. Sci. USA 68 (1971), no. 9, 2102–2107.CrossrefGoogle Scholar

  • [9]

    G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in stationary states, J. Stat. Phys. 80 (1995), no. 5–6, 931–970.CrossrefGoogle Scholar

  • [10]

    V. Y. Chernyak, M. Chertkov and C. Jarzynski, Path-integral analysis of fluctuation theorems for general Langevin processes, J. Stat. Mech. Theory Exp. (2006), P08001.Google Scholar

  • [11]

    S. Deffner, M. Brunner and E. Lutz, Quantum fluctuation theorems in the strong damping limit, Europhys. Lett. 94 (2011).Web of ScienceGoogle Scholar

  • [12]

    L. Cao, P. Ke, L. -Y. Qiao and Z. -G. Zheng, Non-equilibrium thermodynamics and fluctuation relations for small systems, Chin. Phys. B 23 (2014), no. 7, 070501.Google Scholar

  • [13]

    P. -L. M. de Maupertuis, Les loix du mouvement et du repos déduites d’un principe metaphysique, Hist. Acad. R. Sci. B.-Lett. Berlin (1746), 267–294.Google Scholar

  • [14]

    L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91 (1953), no. 6, 1505–1512.CrossrefGoogle Scholar

  • [15]

    Q. -P. Wang, Maximum path information and the principle of least action for chaotic system, Chaos Solitons Fractals 23 (2004), no. 4, 1253–1258.Google Scholar

  • [16]

    E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (1957), no. 4, 620–630.CrossrefGoogle Scholar

  • [17]

    J. Harte and E. A. Newman, Maximum information entropy: A foundation for ecological theory, Trends Ecol. Evol. 29 (2014), no. 7, 384–389.Web of ScienceCrossrefGoogle Scholar

  • [18]

    Y. Alhassid and R. D. Levine, Collision experiments with partial resolution of final states: Maximum entropy procedure and surprisal analysis, Phys. Rev. C 20 (1979), no. 5, 1775–1788.CrossrefGoogle Scholar

  • [19]

    E. T. Jaynes, On the rationale of maximum-entropy methods, Proc. IEEE 70 (1982), no. 9, 939–952.CrossrefGoogle Scholar

  • [20]

    V. R. I. Kaila and A. Annila, Natural selection for least action, Proc. R. Soc. A, Math. Phys. Eng. Sci. 464 (2008), no. 2099, 3055–3070.CrossrefGoogle Scholar

  • [21]

    V. García-Morales, J. Pellicer and J. Manzanares, Thermodynamics based on the principle of least abbreviated action: Entropy production in a network of coupled oscillators, Ann. Phys. 323 (2008), no. 8, 1844–1858.CrossrefWeb of ScienceGoogle Scholar

  • [22]

    G. P. Beretta, Modeling non-equilibrium dynamics of a discrete probability distribution: General rate equation for maximal entropy generation in a maximum-entropy landscape with time-dependent constraints, Entropy 10 (2008), no. 3, 160–182.Web of ScienceCrossrefGoogle Scholar

  • [23]

    A. Annila, Natural thermodynamics, Physica A 444 (2016), 843–852.CrossrefWeb of ScienceGoogle Scholar

  • [24]

    R. Mauri, The principle of minimal resistance in non-equilibrium thermodynamics, Found. Phys. 46 (2016), no. 4, 393–408.Web of ScienceCrossrefGoogle Scholar

  • [25]

    A. Janečka and M. Pavelka, Gradient dynamics and entropy production maximization, J. Non-Equilib. Thermodyn. 43 (2018), no. 1, 1–19.Web of ScienceCrossrefGoogle Scholar

  • [26]

    R. Swenson, Autocatakinetics, yes – autopoiesis, no – steps toward a unified theory of evolutionary ordering, Int. J. Gen. Syst. 21 (1992), no. 2, 207–228.CrossrefGoogle Scholar

  • [27]

    L. M. Martyushev and V. D. Seleznev, Maximum entropy production principle in physics, chemistry and biology, Phys. Rep. 426 (2006), no. 1, 1–45.CrossrefGoogle Scholar

  • [28]

    R. G. Endres, Entropy production selects nonequilibrium states in multistable systems, Sci. Rep. 7 (2017), 14437.Web of ScienceCrossrefGoogle Scholar

  • [29]

    R. C. Dewar, Maximum entropy production and the fluctuation theorem, J. Phys. A, Math. Gen. 38 (2005), no. 21, L371–L381.CrossrefGoogle Scholar

  • [30]

    P. Salamon, K. H. Hoffmann, S. Schubert, S. Berry and B. Andresen, What conditions make minimum entropy production equivalent to maximum power production?, J. Non-Equilib. Thermodyn. 26 (2001), no. 1, 73–83.Google Scholar

  • [31]

    D. H. Sharp, An overview of Rayleigh–Taylor instability, Physica D 12 (1984), no. 1, 3–18.CrossrefGoogle Scholar

  • [32]

    N. H. Aljahdaly and L. Hadji, Buoyancy-driven Rayleigh–Taylor instability in a vertical channel, J. Non-Equilib. Thermodyn. 43 (2018), no. 4, 289–300.CrossrefWeb of ScienceGoogle Scholar

  • [33]

    J. G. Charney, The dynamics of long waves in a baroclinic westerly current, J. Meteorol. 4 (1947), no. 5, 136–162.CrossrefGoogle Scholar

  • [34]

    J. Glimm, J. W. Grove, X. -L. Li, W. Oh and D. H. Sharp, A critical analysis of Rayleigh–Taylor growth rates, J. Comput. Phys. 169 (2001), no. 2, 652–677.CrossrefGoogle Scholar

  • [35]

    E. A. Spiegel and G. Veronis, On the Boussinesq approximation for a compressible fluid, Astrophys. J. 131 (1960), 442.CrossrefGoogle Scholar

  • [36]

    R. L. Ash, A. J. Zuckerwar and Z. Zheng, Second coefficient of viscosity in air, NASA Technical Reports Server, Report no. NASA-CR-187783, (1991), Document ID 19910006051.

  • [37]

    T. K. Sengupta, A. Sengupta, N. Sharma, S. Sengupta, A. Bhole and K. S. Shruti, Roles of bulk viscosity on Rayleigh–Taylor instability: Non-equilibrium thermodynamics due to spatio-temporal pressure fronts, Phys. Fluids 28 (2016), no. 9, 094102.Web of ScienceGoogle Scholar

About the article

Received: 2018-11-26

Revised: 2019-04-20

Accepted: 2019-05-10

Published Online: 2019-06-07

Published in Print: 2019-10-25


Funding Source: Indian Institute of Technology Kanpur

Award identifier / Grant number: DF/FEP/73509(FA)/2017-IITK/2148

The authors are grateful to the Inter-IIT Faculty Exchange Program vide IIT-Kanpur’s office order no. DF/FEP/73509(FA)/2017-IITK/2148 dt, 5 Dec 2017, for supporting this theoretical research.


Citation Information: Journal of Non-Equilibrium Thermodynamics, Volume 44, Issue 4, Pages 363–371, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2018-0091.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in