Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year

IMPACT FACTOR 2017: 1.633
5-year IMPACT FACTOR: 1.642

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.591
Source Normalized Impact per Paper (SNIP) 2017: 1.160

See all formats and pricing
More options …
Volume 42, Issue 2


Pitfalls of Exergy Analysis

Petr Vágner
  • Corresponding author
  • Research Centre, New Technologies, University of West Bohemia, Univerzitní – 8, 306 14 Pilsen, Czech Republic; Charles University, Faculty of Mathematics and Physics, Mathematical Institute, Sokolovská 83, 186 75 Prague, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michal Pavelka
  • Charles University, Faculty of Mathematics and Physics, Mathematical Institute, Sokolovská 83, 186 75 Prague, Czech Republic; University of Chemistry and Technology Prague, Department of Chemical Engineering, Technická 5, 16628 Prague 6, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ František Maršík
Published Online: 2017-01-10 | DOI: https://doi.org/10.1515/jnet-2016-0043


The well-known Gouy–Stodola theorem states that a device produces maximum useful power when working reversibly, that is with no entropy production inside the device. This statement then leads to a method of thermodynamic optimization based on entropy production minimization. Exergy destruction (difference between exergy of fuel and exhausts) is also given by entropy production inside the device. Therefore, assessing efficiency of a device by exergy analysis is also based on the Gouy–Stodola theorem. However, assumptions that had led to the Gouy–Stodola theorem are not satisfied in several optimization scenarios, e.g. non-isothermal steady-state fuel cells, where both entropy production minimization and exergy analysis should be used with caution. We demonstrate, using non-equilibrium thermodynamics, a few cases where entropy production minimization and exergy analysis should not be applied.

Keywords: exergy analysis; non-equilibrium thermodynamics; fuel cells; optimization,entropy production minimization


  • [1] G. Gouy. Sur l’énergie utilizable, J. Phys. 8 (1889), 501–518.Google Scholar

  • [2] A. Stodola. Die Kreisprozesse der Gasmaschine, Zeitschrift d. Ver. d. Ingenieure, 1898.

  • [3] A. Bejan. Entropy generation minimization: The new thermodynamics of finite size devices and finite time processes, J. Appl. Phys. 79 (1996), no. 3, 1191–1218.Google Scholar

  • [4] A. Sciacovelli. Thermodynamic optimization of a monolithic-type solid oxide fuel cell, Int. J. Thermodyn. 13 (2010), no. 3, 95–103.Google Scholar

  • [5] J. Meixner and H. G. Reik. Thermodynamik der Irreversible Prozesse, in Handbuch der Physik, Volume 3/II. Springer, Berlin Heidelberg New York, 1959.

  • [6] S. R. de Groot and P. Mazur. Non-equilibrium Thermodynamics. Dover Publications, New York, 1984.

  • [7] S. Kjelstrup and D. Bedeaux. Non-equilibrium Thermodynamics of Heterogeneous Systems. Series on Advances in Statistical Mechanics. World Scientific Publishing Co, Pte, Ltd. 5 Toh Tuck Link, Singapore, 2008.

  • [8] S. Kjelstrup, D. Bedeaux and E. Johannessen. Non-equilibrium Thermodynamics for Engineers. Science and culture series (Singapore): Physics. World Scientific, 2010.Google Scholar

  • [9] K. H. Hoffmann, J. M. Burzler and S. Schubert. Endoreversible thermodynamics, J. Non-Equilib. Thermodyn. 22 (1997), no. 4, 311–355.Google Scholar

  • [10] S. Sieniutycz and M. R. von Spakovsky. Finite time generalization of thermal exergy, Energy Convers. Manage. 39 (1998), no. 14, 1423 – 1447.Google Scholar

  • [11] K. H. Hoffmann, J. Burzler, A. Fischer, M. Schaller and S. Schubert. Optimal process paths for endoreversible systems, J. Non-Equilib. Thermodyn. 28 (2003), no. 3, 233–268.Google Scholar

  • [12] F. L. Curzon and B. Ahlborn. Efficiency of a Carnot engine at maximum power output, Am. J. Phys. 43 (1975), 22–24.Google Scholar

  • [13] I. I. Novikov. The efficiency of atomic power stations, J. Nucl. Energy II 7 (1985), 125. [Atomnaya Energiya 3, 409 (1957)].Google Scholar

  • [14] P. Salamon, K. H. Hoffmann, S. Schubert, R. S. Berry and B. Andresen. What conditions make minimum entropy production equivalent to maximum power production? J. Non-Equilib. Thermodyn 26 (2001), 73–83.Google Scholar

  • [15] M. Pavelka and F. Maší. Detailed thermodynamic analysis of polymer electrolyte membrane fuel cell efficiency, Int. J. Hydrogen Energy 38 (2013), no. 17, 7102–7113.Google Scholar

  • [16] M. Pavelka, V. Klika, P. Vágner and F. Maršík. Generalization of exergy analysis. Appl. Energy 137 (2015), 158–172.Google Scholar

  • [17] M.H. Arshad, Ramazan Kahraman, A. Z. Sahin and R. Ben-Mansour. Second lawanalysis of compressible flow through a diffuser subjected to constant heat flux at wall, Energy Convers. Manage. 51 (2010), 2808–2815.Google Scholar

  • [18] F. A. Al-Sulaiman, G. Prakash Narayan and J. H. Lienhard V. Exergy analysis of a high-temperature-steam-driven, varied-pressure, humidification-dehumidification system coupled with reverse osmosis, Appl. Energy 103 (2013), 552–561.Google Scholar

  • [19] F. Gutiérrez and F. Méndez. Entropy generation minimization for the thermal decomposition of methane gas in hydrogen using genetic algorithms, Energy Convers. Manage. 55 (2012), 1–13.Google Scholar

  • [20] M. Ishida, D. Zheng, and T. Akehata. Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis, Energy 12 (Feb 1987), no. 2, 147–154.Google Scholar

  • [21] A. Sciacovelli and V. Verda. Second-law design of a latent heat thermal energy storage with branched fins, Int. J. Numer. Methods Heat Fluid Flow 26 (2016), no. 2, 489–503.Google Scholar

  • [22] L. D. Landau and E.M. Lifshitz. Course of theoretical physics-Pergamon International Library of Science, Technology, Engineering and Social Studies. Statistical physics. Pt. 1. Oxford: Pergamon Press, and Reading: Addison-Wesley, c1969, 2nd rev.-enlarg. ed. 1 (1969).

  • [23] M. Pavelka, F. Maršík and V. Klika. Consistent theory of mixtures on different levels of description, Int. J. Eng. Sci. 78 (2014), 192–217.Google Scholar

  • [24] M. Pavelka, F. Wandschneider and P. Mazur. Thermodynamic derivation of open circuit voltage in vanadium redox flow batteries. J. Power Sources 293 (2015), 400–408.Web of ScienceGoogle Scholar

About the article

Received: 2016-05-12

Revised: 2016-09-13

Accepted: 2016-11-04

Published Online: 2017-01-10

Published in Print: 2017-04-01

The result was developed within the CENTEM project, reg. no. CZ.1.05/2.1.00/03.0088, cofunded by the ERDF as part of the Ministry of Education, Youth and Sports OP RDI programme and, in the follow-up sustainability stage, supported through CENTEM PLUS (LO1402) by financial means from the Ministry of Education, Youth and Sports under the National Sustainability Programme I. The work was supported by Czech Science Foundation (project no. 14-18938S). The study was supported by the Charles University, project GA UK No 70515.

Citation Information: Journal of Non-Equilibrium Thermodynamics, Volume 42, Issue 2, Pages 201–216, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2016-0043.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Enrico Sciubba and Federico Zullo
Entropy, 2017, Volume 19, Number 6, Page 263

Comments (0)

Please log in or register to comment.
Log in