Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year


IMPACT FACTOR 2017: 1.633
5-year IMPACT FACTOR: 1.642

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.591
Source Normalized Impact per Paper (SNIP) 2017: 1.160

Online
ISSN
1437-4358
See all formats and pricing
More options …
Volume 42, Issue 2

Issues

Extra Mass Flux in Fluid Mechanics

Peter Ván
  • Corresponding author
  • Department of Theoretical Physics, Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary; Department of Energy Engineering, BME, Budapest, Hungary; Montavid Thermodynamic Research Group
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michal Pavelka
  • Faculty of Mathematics and Physics, Mathematical Institute, Charles University in Prague, Sokolovska 83, 18675 Prague, Czech Republic; Department of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic; École Polytechnique de Montréal, C.P. 6079 succ. Centre-ville, Montréal, H3C 3A7, Québec, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miroslav Grmela
  • École Polytechnique de Montréal, C.P. 6079 succ. Centre-ville, Montréal, H3C 3A7, Québec, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-09 | DOI: https://doi.org/10.1515/jnet-2016-0058

Abstract

The conditions of existence of extra mass flux in single-component dissipative nonrelativistic fluids are clarified. By considering Galilean invariance, we show that if total mass flux is equal to total momentum density, then mass, momentum, angular momentum and booster (center of mass) are conserved. However, these conservation laws may be fulfilled also by other means. We show an example of weakly nonlocal hydrodynamics where the conservation laws are satisfied as well although the total mass flux is different from momentum density.

Keywords: extra mass flux; fluid dynamics; nonlocality; Hamiltonian; Galilean invariance

References

  • [1] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, London, 1959. A footnote at the end of Ch. 49.Google Scholar

  • [2] I. E. Dzyaloshinskii and G. E. Volovick, Poisson brackets in condense matter physics, Ann. Phys. 125 (1980), no. 1, 67–97.Google Scholar

  • [3] Y. L. Klimontovich, On the need for and the possibility of a unified description of kinetic and hydrodynamic processes, Theor. Math. Phys. 92 (1992), no. 2, 909–921.Google Scholar

  • [4] H. Brenner, Fluid mechanics revisited, Physica A 370 (2006), no. 2, 190–224.Google Scholar

  • [5] H. Brenner, Beyond Navier–stokes, Int. J. Eng. Sci. 54 (2012), 67–98.Google Scholar

  • [6] P. Kostädt and M. Liu, Three ignored densities, frame-independent thermodynamics, and broken Galilean symmetry, Phys. Rev. E 58 (1998), 5535.Google Scholar

  • [7] H. C. Öttinger, Weakly and strongly consistent formulations of irreversible processes, Phys. Rev. Lett. 99 (2007), no. 13, 130602.Google Scholar

  • [8] M. Liu, Comment on “weakly and strongly consistent formulations of irreversible processes”, Phys. Rev. Lett. 100 (2008), 098901.Google Scholar

  • [9] H. C. Öttinger, H. Struchtrup and M. Liu, Inconsistency of a dissipative contribution to the mass flux in hydrodynamics, Phys. Rev. E 80 (2009), no. 5, 056303.Google Scholar

  • [10] J. Goddard, On material velocities and non-locality in the thermo-mechanics of continua, Int. J. Eng. Sci. 48 (2010), no. 11, 1279–1288.Google Scholar

  • [11] M. Grmela, Mass flux in extended and classical hydrodynamics, Phys. Rev. E 89 (2014), 063024.Google Scholar

  • [12] P. Ván and T. Biró, Thermodynamics and flow-frames for dissipative relativistic fluids, in: Chacón-Acosta G., García-Perciante A. L., Sandoval-Villalbazo A. (eds.), Plasma Physics and Relativistic Fluids Vol. 1578 of AIP Conf. Proceedings (2014), 114–121. arXiv:1310.5976.

  • [13] P. Kostädt and M. Liu, On the causality and stability of the relativistic diffusion equation, Phys. Rev. D 62 (2000), 023003.Google Scholar

  • [14] T. Osada, Modification of Eckart theory of relativistic dissipative fluid dynamics by introducing extended matching conditions, Phys. Rev. C 85 (2012), 014906.Google Scholar

  • [15] K. Tsumura and T. Kunihiro, Uniqueness of Landau–Lifshitz energy frame in relativistic dissipative hydrodynamics, Phys. Rev. E 87 (2013), 053008.Google Scholar

  • [16] F. Becattini, L. Bucciantini, E. Grossi and L. Tinti, Local thermodynamical equilibrium and the beta frame for a quantum relativistic fluid, Eur. Phys. J. C 75 (2015), 191. arXiv:1403.6265.Google Scholar

  • [17] A. Garcia-Perciante, H. Mondragon-Suarez, D. Brun-Battistini and A. Sandoval-Villalbazo, On the stability problem in special relativistic thermodynamics: implications of the Chapman–Enskog formalism, J. Stat. Phys. 160 (2015), 760–769.Google Scholar

  • [18] P. Havas, Four-dimensional formulations of Newtonian mechanics and their relation to the special and the general theory of relativity, Rev. Mod. Phys. 36 (Oct 1964), 938–965.Google Scholar

  • [19] I. Müller and T. Ruggeri, Rational Extended Thermodynamics, Springer, New York, 1998.

  • [20] M. Frewer, More clarity on the concept of material frame-indifference on classical continuum mechanics, Acta Mech. 202 (2009), 213–246.Google Scholar

  • [21] P. Ván, Galilean relativistic fluid mechanics 2015. arXiv:1508.00121.

  • [22] T. Ruggeri, Galilean invariance and entropy principle for systems of balance laws, Continuum Mech. Thermodyn. 1 (1989), no. 1, 3–20.Google Scholar

  • [23] F. W. Hehl, On the energy tensor of spinning massive matter in classical field theory and general relativity, Rep. Math. Phys. 9 (1976), no. 1, 55–82.Google Scholar

  • [24] D. Bohm and J. -P. Vigier, Relativistic hydrodynamics of rotating fluid masses, Phys. Rev. 109 (1958), no. 6, 1882.Google Scholar

  • [25] F. Becattini, Hydrodynamics of fluids with spin, Phys. Part. Nucl. Lett. 8 (2011), no. 8, 801–804.Google Scholar

  • [26] M. Brocato and G. Capriz, Spin fluids and hyperfluids, Theor. Appl. Mech. 28–29 (2002), 39–54.Google Scholar

  • [27] A. Clebsch, üBer die integration der hydrodynamische gleichungen, J. Reine Angew. Math. 56 (1895), 1–10.Google Scholar

  • [28] V. Arnold, Sur la géometrie différentielle des groupes de lie de dimension infini et ses applications dans l’hydrodynamique des fluides parfaits, Ann. I Fourier 16 (1966), no. 1, 319–361.Google Scholar

  • [29] M. Grmela, Extensions of classical hydrodynamics, J. Stat. Phys. 132 (2008), 581–602.Google Scholar

  • [30] S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, Dover Publications, New York, 1984.Google Scholar

  • [31] R. L. Liboff, Kinetic Theory (Classical, Quantum, and Relativistic Descriptions), Prentice Hall, Englewood Cliffs, NJ, 1990.Google Scholar

  • [32] I. Müller and T. Ruggeri, Rational Extended Thermodynamics, 37 of Springer Tracts in Natural Philosophy, 2nd ed, Springer Verlag, New York, etc., 1998.Google Scholar

  • [33] M. Grmela and H. C. Öttinger, Dynamics and thermodynamics of complex fluids. I. Development of a general formalism, Phys. Rev. E 56 (Dec 1997), 6620–6632.Google Scholar

  • [34] D. Enskog, Kinetiche theorie der wärmeleitung, reibung und selbstdiffusion in gewissen werdichteten gasen und flüßigkeiten, Kungl. Sv. Vetenskapsakademiens Handl. 63 (1922), no. 4, 1–44.Google Scholar

  • [35] M. Pavelka, V. Klika and M. Grmela, Time reversal in nonequilibrium thermodynamics, Phys. Rev. E 90 (Dec 2014), 062131.Google Scholar

  • [36] J. Cahn and J. Hilliard, Free energy of a nonuniform system. Interfacial free energy, J. Chem. Phys. 28 (1958), 258.Google Scholar

  • [37] D. Jou, J. Casas-Vázquez and G. Lebon, Extended Irreversible Thermodynamics, 4th ed., Springer-Verlag, New York, 2010.Google Scholar

  • [38] J. Marsden, T. Ratiu and A. Weinstein, Semidirect products and reduction in mechanics, Trans. Am. Math. Soc. 281 (1984), no. 1, 147–177.Google Scholar

  • [39] D. Bedeaux, S. Kjelstrup and H. Öttinger, On a possible difference between the barycentric velocity and the velocity that gives translational momentum in fluids, Physica A 371 (2006), no. 2, 177–187.Google Scholar

  • [40] M. Gurtin, E. Fried and L. Anand, The Mechanics and Thermodynamics of Continua, Cambridge University Press, Cambridge, 2010.

  • [41] P. -L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl. 71 (1998), 585–621.Google Scholar

  • [42] D. Semwogerere, J. Morris and A. Weeks, Development of particle migration in pressure-driven flow of a Brownian suspension, J. Fluid Mech. 581 (2007), 437–451.Google Scholar

  • [43] A. Dukhin and P. Goetz, Characterization of Liquids, Nano- and Microparticulates, and Porous Bodies Using Ultrasound. Studies in Interface Science, Elsevier Science, Amsterdam, Netherlands, 2010.

About the article

Received: 2016-07-08

Accepted: 2016-07-29

Published Online: 2016-09-09

Published in Print: 2017-04-01


This project was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) and by the grants K104260, K116197 and K116375 of the Hungarian National Research Fund. The work was supported by Czech Science Foundation (project no. 14-18938S).


Citation Information: Journal of Non-Equilibrium Thermodynamics, Volume 42, Issue 2, Pages 133–151, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2016-0058.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Miroslav Grmela, Liu Hong, David Jou, Georgy Lebon, and Michal Pavelka
Physical Review E, 2017, Volume 95, Number 3

Comments (0)

Please log in or register to comment.
Log in