Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year


IMPACT FACTOR 2017: 1.633
5-year IMPACT FACTOR: 1.642

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.591
Source Normalized Impact per Paper (SNIP) 2017: 1.160

Online
ISSN
1437-4358
See all formats and pricing
More options …
Ahead of print

Issues

A Symmetric Van ’t Hoff Equation and Equilibrium Temperature Gradients

D. P. Sheehan
Published Online: 2018-06-21 | DOI: https://doi.org/10.1515/jnet-2017-0007

Abstract

Thermodynamically isolated systems normally relax to equilibria characterized by single temperatures; however, in recent years several systems have been identified that challenge this presumption, demonstrating stationary temperature gradients at equilibrium. These temperature gradients, most pronounced in systems involving epicatalysis, can be explained via an underappreciated symmetry in the Van ’t Hoff equation.

Keywords: non-equilibrium thermodynamics; Van ’t Hoff equation; epicatalysis; catalysis; second law of thermodynamics

References

  • [1]

    S. H. Van ‘t Hoff, Études de Dynamique Chimique, Frederik Muller, Amsterdam, 1884.Google Scholar

  • [2]

    D. P. Sheehan, Phys. Rev. E 88 (2013), 032125.Google Scholar

  • [3]

    The term epicatalysis was coined in 2013, but examples of it appear in the literature earlier, e. g., (1998) [4].

  • [4]

    D. P. Sheehan, Phys. Rev. E 57 (1998), 6660.CrossrefGoogle Scholar

  • [5]

    T. L. Duncan, Phys. Rev. E 61 (2000), 4661.CrossrefGoogle Scholar

  • [6]

    D. P. Sheehan, J. T. Garamella, D. J. Mallin and W. F. Sheehan, Phys. Scr. T151 (2012), 014030.Google Scholar

  • [7]

    D. P. Sheehan, D. J. Mallin, J. T. Garamella and W. F. Sheehan, Found. Phys. 44, (2014) 235.CrossrefGoogle Scholar

  • [8]

    This section opens following the development from F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill Book Co, New York, 1965, pp. 319–25.Google Scholar

  • [9]

    H. Le Chatelier and O. Boudouard, Bulletin de la Société Chimique de France (Paris) 19 (1898), 483.Google Scholar

  • [10]

    P. W. Atkins, The Elements of Physical Chemistry, 3rd Ed., Oxford University Press, Oxford, 1993.Google Scholar

  • [11]

    L. Onsager, Phys. Rev. 37 (1931), 405.CrossrefGoogle Scholar

  • [12]

    It might be wondered whether surface type could be added to K as another independent variable like T or V, e. g., K(T,V,SY), where SY is surface type. In practice, given the complexities of surface interactions, it is unclear how meaningful including SY would be; moreover, it is unnecessary because surface type is automatically incorporated into K via the states included in the partition function Z. Variation in surface type is already implicit in equations (3), (4); however, if desired it could be made formally explicit by writing (ln(K)x)(ln(K)SY)(SYx).

  • [13]

    For the sake of visualization, consider solutions of NaOH and HCl poured into a beaker, forming NaCl solution. The reaction (NaOH + HCl ⟶ NaCl + H2O) occurs in the thin turbulent interfaces where the two solutions mix.

  • [14]

    V. Smil, Enriching the Earth: Fritz Haber, Carl Bosch and the Transformation of World Food Production, MIT Press, Cambridge, 2001.Google Scholar

  • [15]

    B. Strömgren, Astrophys. J. 89 (1939), 526.CrossrefGoogle Scholar

  • [16]

    Even under optimal conditions, depletion regions are unlikely to exceed about 100 μm.

  • [17]

    L. Dufour, Poggend. Ann. Physik 148 (1873), 490.Google Scholar

  • [18]

    S. E. Ingle and F. H. Horne, J. Chem. Phys. 59 (1973), 5882.CrossrefGoogle Scholar

  • [19]

    R. G. Mortimer and H. Eyring, Proc. Natl. Acad. Sci. USA 77 (1980), 1728.CrossrefGoogle Scholar

  • [20]

    M. N. Saha, Proc. R. Soc. A, Math. Phys. Eng. Sci. 99 (1921), 135.CrossrefGoogle Scholar

  • [21]

    R. W. Motley, Q-Machines, Academic Press, New York, 1975.Google Scholar

  • [22]

    N. Rynn and N. D’Angelo, Rev. Sci. Instrum. 31 (1960), 1326.CrossrefGoogle Scholar

  • [23]

    Q-plasmas do not require magnetic fields; they can also be created inside unmagnetized, three-dimensional blackbody cavities.

  • [24]

    K. Kingdon and I. Langmuir, Phys. Rev. 22 (1923), 148.CrossrefGoogle Scholar

  • [25]

    M. J. Dresser, J. Appl. Phys. 39 (1968), 338–339.CrossrefGoogle Scholar

  • [26]

    The Q-plasma’s electron number density, set by Richardson emission, also depends on the hotplate work function.

  • [27]

    It has been said that the sheath is the first thing one learns about plasmas, but it is the last thing one understands.

  • [28]

    K. W. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience, 2nd ed., John Wiley, England, 2009.Google Scholar

  • [29]

    G. Rothenberg, Catalysis: Concepts and Green Applications, Wiley-VCH, Weinheim, 2008.Google Scholar

  • [30]

    V. Parmon, Thermodynamics of Non-Equilibrium Processes for Chemists with a Particular Application to Catalysis, Elsevier, Amsterdam, 2010.Google Scholar

  • [31]

    D. P. Sheehan, Phys. Plasmas 3 (1996), 104.CrossrefGoogle Scholar

  • [32]

    L. Schäfer, C.-P. Klages, U. Meier and K. Kohse-Höinghaus, Appl. Phys. Lett. 58 (1991), 571.CrossrefGoogle Scholar

  • [33]

    T. Otsuka, M. Ihara and H. Komiyama, J. Appl. Phys. 77 (1995), 893.CrossrefGoogle Scholar

  • [34]

    D. P. Sheehan, Phys. Lett. A 280 (2001), 185.CrossrefGoogle Scholar

  • [35]

    X. Qi, Z. Chen and G. Wang, J. Mater. Sci. Technol. 19 (2003), 235.Google Scholar

  • [36]

    F. Jansen, I. Chen and M. A. Machonkin, J. Appl. Phys. 66 (1989), 5749.CrossrefGoogle Scholar

  • [37]

    D. P. Sheehan and T. A. Zawlacki, Rev. Sci. Instrum. 87 (2016), 074101.Google Scholar

  • [38]

    D. M. Rowe, ed., Thermoelectrics Handbook: Macro to Nano, CRC Press, 2005.Google Scholar

  • [39]

    S. Iwanaga, E. S. Toberer, A. LaLonde and G. J. Snyder, Rev. Sci. Instrum. 82 (2011), 063905.Google Scholar

  • [40]

    G. Levy, Entropy 15 (2013), 4700.CrossrefGoogle Scholar

  • [41]

    G. W. Neudeck, Volume II: The PN Junction Diode, 2nd ed., Modular Series on Solid State Devices, G. W. Neudeck and R. F. Pierret, eds, Addison-Wesley Publishing Co., Reading, MA, 1989.Google Scholar

  • [42]

    B. Gaveau and L. S. Schulman, Phys. Rev. E 79 (2009), 021112.Google Scholar

  • [43]

    S. R. de Groot and P. Mazur Non-equilibrium Thermodynamics, Dover, New York, 1984.Google Scholar

  • [44]

    D. Jou, J. Casas-Vázquez, G. Lebon, Extended Irreversible Thermodynamics, Springer, Berlin, 1993.Google Scholar

  • [45]

    R. Balescu, Equilibrium and Non-equilibrium Statistical Mechanics, Wiley-Interscience, New York, 1975.Google Scholar

  • [46]

    D. P. Sheehan, J. Sci. Explor. 12 (1998), 303.Google Scholar

  • [47]

    Radiation dominates the energy budget in these high-temperature systems, however, it couples weakly to the particles (electrons, ions, and atoms), such that they can maintain temperature disparities and gradients.

  • [48]

    D. P. Sheehan, Epicatalytic Thermal Diode; U.S. patent No. 9,212,828, (2015).

  • [49]

    For the sake of illustration, let the number of epicatalytically active surface sites on S1 and S2 be σ=1016m2 and the reaction energy be ΔE=0.5eV=8×1019J, typical of hydrogen-bonded dimers like methanol and formic acid [37]. Let the average cycling time τc be the thermal transit time for room-temperature 100 amu molecules (typical for volatile species) to cross the S1–S2 gap of thickness 10−6 m, that is, τcxgvth108s. With these, the areal power density for the STG device is estimated to be P106W/m2. This, of course, will be reduced by unavoidable convective, radiative, and conductive backflows.

  • [50]

    P. Ajayan, P. Kim and K. Banerjee, Phys. Today 69(9) (2016), 39.Google Scholar

  • [51]

    E. Rousseau, et al., Nat. Photonics 3 (2009), 514.CrossrefGoogle Scholar

  • [52]

    K. Kim, et al., Nat. Nanotechnol. 10 (2015), 253.CrossrefGoogle Scholar

  • [53]

    D. P. Sheehan and T. Welsh, in review (2018).

About the article

Received: 2018-01-17

Revised: 2018-05-25

Accepted: 2018-05-28

Published Online: 2018-06-21


Citation Information: Journal of Non-Equilibrium Thermodynamics, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2017-0007.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in