[1]

S. H. Van ‘t Hoff, *Études de Dynamique Chimique*, Frederik Muller, Amsterdam, 1884.Google Scholar

[2]

D. P. Sheehan, *Phys. Rev. E* 88 (2013), 032125.Google Scholar

[3]

The term *epicatalysis* was coined in 2013, but examples of it appear in the literature earlier, e. g., (1998) [4].

[4]

D. P. Sheehan, *Phys. Rev. E* 57 (1998), 6660.CrossrefGoogle Scholar

[5]

T. L. Duncan, *Phys. Rev. E* 61 (2000), 4661.CrossrefGoogle Scholar

[6]

D. P. Sheehan, J. T. Garamella, D. J. Mallin and W. F. Sheehan, *Phys. Scr.* T151 (2012), 014030.Google Scholar

[7]

D. P. Sheehan, D. J. Mallin, J. T. Garamella and W. F. Sheehan, *Found. Phys.* 44, (2014) 235.CrossrefGoogle Scholar

[8]

This section opens following the development from F. Reif, *Fundamentals of Statistical and Thermal Physics*, McGraw-Hill Book Co, New York, 1965, pp. 319–25.Google Scholar

[9]

H. Le Chatelier and O. Boudouard, *Bulletin de la Société Chimique de France (Paris)* 19 (1898), 483.Google Scholar

[10]

P. W. Atkins, *The Elements of Physical Chemistry*, 3rd Ed., Oxford University Press, Oxford, 1993.Google Scholar

[11]

L. Onsager, *Phys. Rev.* 37 (1931), 405.CrossrefGoogle Scholar

[12]

It might be wondered whether surface type could be added to *K* as another independent variable like *T* or *V*, e. g., $\mathit{K}\mathrm{(}\mathit{T}\mathrm{,}\mathit{V}\mathrm{,}{\mathit{S}}_{\mathrm{Y}}\mathrm{)}$, where ${\mathit{S}}_{\mathrm{Y}}$ is surface type. In practice, given the complexities of surface interactions, it is unclear how meaningful including ${\mathit{S}}_{\mathrm{Y}}$ would be; moreover, it is unnecessary because surface type is automatically incorporated into *K* via the states included in the partition function *Z*. Variation in surface type is already implicit in equations (3), (4); however, if desired it could be made *formally explicit* by writing $\mathrm{(}\frac{\partial ln\mathrm{(}\mathit{K}\mathrm{)}}{\partial \mathit{x}}\mathrm{)}\equiv \mathrm{(}\frac{\partial ln\mathrm{(}\mathit{K}\mathrm{)}}{\partial {\mathit{S}}_{\mathrm{Y}}}\mathrm{)}\mathrm{(}\frac{\partial {\mathit{S}}_{\mathit{Y}}}{\partial \mathit{x}}\mathrm{)}$.

[13]

For the sake of visualization, consider solutions of NaOH and HCl poured into a beaker, forming NaCl solution. The reaction (NaOH + HCl ⟶ NaCl + H2O) occurs in the thin turbulent interfaces where the two solutions mix.

[14]

V. Smil, *Enriching the Earth: Fritz Haber, Carl Bosch and the Transformation of World Food Production*, MIT Press, Cambridge, 2001.Google Scholar

[15]

B. Strömgren, *Astrophys. J.* 89 (1939), 526.CrossrefGoogle Scholar

[16]

Even under optimal conditions, depletion regions are unlikely to exceed about 100 *μ*m.

[17]

L. Dufour, *Poggend. Ann. Physik* 148 (1873), 490.Google Scholar

[18]

S. E. Ingle and F. H. Horne, *J. Chem. Phys.* 59 (1973), 5882.CrossrefGoogle Scholar

[19]

R. G. Mortimer and H. Eyring, *Proc. Natl. Acad. Sci. USA* 77 (1980), 1728.CrossrefGoogle Scholar

[20]

M. N. Saha, *Proc. R. Soc. A, Math. Phys. Eng. Sci.* 99 (1921), 135.CrossrefGoogle Scholar

[21]

R. W. Motley, *Q-Machines*, Academic Press, New York, 1975.Google Scholar

[22]

N. Rynn and N. D’Angelo, *Rev. Sci. Instrum.* 31 (1960), 1326.CrossrefGoogle Scholar

[23]

Q-plasmas do not require magnetic fields; they can also be created inside unmagnetized, three-dimensional blackbody cavities.

[24]

K. Kingdon and I. Langmuir, *Phys. Rev.* 22 (1923), 148.CrossrefGoogle Scholar

[25]

M. J. Dresser, *J. Appl. Phys.* 39 (1968), 338–339.CrossrefGoogle Scholar

[26]

The Q-plasma’s electron number density, set by Richardson emission, also depends on the hotplate work function.

[27]

It has been said that the sheath is the first thing one learns about plasmas, but it is the last thing one understands.

[28]

K. W. Kolasinski, *Surface Science: Foundations of Catalysis and Nanoscience*, 2nd ed., John Wiley, England, 2009.Google Scholar

[29]

G. Rothenberg, *Catalysis: Concepts and Green Applications*, Wiley-VCH, Weinheim, 2008.Google Scholar

[30]

V. Parmon, *Thermodynamics of Non-Equilibrium Processes for Chemists with a Particular Application to Catalysis*, Elsevier, Amsterdam, 2010.Google Scholar

[31]

D. P. Sheehan, *Phys. Plasmas* 3 (1996), 104.CrossrefGoogle Scholar

[32]

L. Schäfer, C.-P. Klages, U. Meier and K. Kohse-Höinghaus, *Appl. Phys. Lett.* 58 (1991), 571.CrossrefGoogle Scholar

[33]

T. Otsuka, M. Ihara and H. Komiyama, *J. Appl. Phys.* 77 (1995), 893.CrossrefGoogle Scholar

[34]

D. P. Sheehan, *Phys. Lett. A* 280 (2001), 185.CrossrefGoogle Scholar

[35]

X. Qi, Z. Chen and G. Wang, *J. Mater. Sci. Technol.* 19 (2003), 235.Google Scholar

[36]

F. Jansen, I. Chen and M. A. Machonkin, *J. Appl. Phys.* 66 (1989), 5749.CrossrefGoogle Scholar

[37]

D. P. Sheehan and T. A. Zawlacki, *Rev. Sci. Instrum.* 87 (2016), 074101.Google Scholar

[38]

D. M. Rowe, ed., *Thermoelectrics Handbook: Macro to Nano*, CRC Press, 2005.Google Scholar

[39]

S. Iwanaga, E. S. Toberer, A. LaLonde and G. J. Snyder, *Rev. Sci. Instrum.* 82 (2011), 063905.Google Scholar

[40]

G. Levy, *Entropy* 15 (2013), 4700.CrossrefGoogle Scholar

[41]

G. W. Neudeck, *Volume II: The PN Junction Diode*, 2nd ed., Modular Series on Solid State Devices, G. W. Neudeck and R. F. Pierret, eds, Addison-Wesley Publishing Co., Reading, MA, 1989.Google Scholar

[42]

B. Gaveau and L. S. Schulman, *Phys. Rev. E* 79 (2009), 021112.Google Scholar

[43]

S. R. de Groot and P. Mazur *Non-equilibrium Thermodynamics*, Dover, New York, 1984.Google Scholar

[44]

D. Jou, J. Casas-Vázquez, G. Lebon, *Extended Irreversible Thermodynamics*, Springer, Berlin, 1993.Google Scholar

[45]

R. Balescu, *Equilibrium and Non-equilibrium Statistical Mechanics*, Wiley-Interscience, New York, 1975.Google Scholar

[46]

D. P. Sheehan, *J. Sci. Explor.* 12 (1998), 303.Google Scholar

[47]

Radiation dominates the energy budget in these high-temperature systems, however, it couples weakly to the particles (electrons, ions, and atoms), such that they can maintain temperature disparities and gradients.

[48]

D. P. Sheehan, *Epicatalytic Thermal Diode*; U.S. patent No. 9,212,828, (2015).

[49]

For the sake of illustration, let the number of epicatalytically active surface sites on S1 and S2 be ${\mathit{\sigma}}_{\ast}={10}^{16}\text{\u2008}{\text{m}}^{-2}$ and the reaction energy be $\mathrm{\Delta}\mathit{E}=0.5\text{\u2008}\text{eV}=8\times {10}^{-19}\text{\u2008}\text{J}$, typical of hydrogen-bonded dimers like methanol and formic acid [37]. Let the average cycling time ${\mathit{\tau}}_{\mathit{c}}$ be the thermal transit time for room-temperature 100 amu molecules (typical for volatile species) to cross the S1–S2 gap of thickness 10−6 m, that is, ${\mathit{\tau}}_{\mathit{c}}\simeq \frac{{\mathit{x}}_{\mathit{g}}}{{\mathit{v}}_{\mathit{t}\mathit{h}}}\simeq {10}^{-8}\text{\u2008}\mathrm{s}$. With these, the areal power density for the STG device is estimated to be $\mathcal{P}\simeq {10}^{6}\text{\u2008}{\mathrm{W}\mathrm{/}\mathrm{m}}^{2}$. This, of course, will be reduced by unavoidable convective, radiative, and conductive backflows.

[50]

P. Ajayan, P. Kim and K. Banerjee, *Phys. Today* 69(9) (2016), 39.Google Scholar

[51]

E. Rousseau, et al., *Nat. Photonics* 3 (2009), 514.CrossrefGoogle Scholar

[52]

K. Kim, et al., *Nat. Nanotechnol.* 10 (2015), 253.CrossrefGoogle Scholar

[53]

D. P. Sheehan and T. Welsh, in review (2018).

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.