Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year

IMPACT FACTOR 2017: 1.633
5-year IMPACT FACTOR: 1.642

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.591
Source Normalized Impact per Paper (SNIP) 2017: 1.160

See all formats and pricing
More options …
Volume 43, Issue 4


Buoyancy-Driven Rayleigh–Taylor Instability in a Vertical Channel

Noufe H. Aljahdaly / Layachi Hadji
Published Online: 2018-06-20 | DOI: https://doi.org/10.1515/jnet-2017-0067


Suppose that a vertical tube is composed of two chambers that are separated by a retractable thermally insulated thin membrane. The upper and lower chambers are filled with an incompressible fluid and maintained at temperatures Tc and Th>Tc, respectively. Upon removal of the membrane, the two fluid masses form an unstably stratified Rayleigh–Taylor-type configuration with cold and heavy fluid overlying a warmer and lighter fluid and separated by an interface across which there is a discontinuity in the density. Due to the presence of an initial discontinuity between two homogeneous states, this problem is mathematically homologous to that of the shock tube problem with the thermal expansion playing the role of pressure. When the two fluid regions are brought directly into contact with each other and the transient interfacial fluctuations have subsided, we show the emergence of a stationary state of convection through a supercritical bifurcation provided a threshold value for the temperature difference is exceeded. We suggest a possible way for the experimental testing of the theoretical results put forth in this paper.

Keywords: non-linear thermal convection; unstably stratified flows; buoyancy-driven flows


  • [1]

    S. Chandrasekhar, Hydrodynamic and Hydromagnetic stability, Clarendon Press, Oxford, 1961, p. 19.Google Scholar

  • [2]

    P. G. Drazin and W. H. Reid, Hydrodynamic stability, Cambridge University Press, Cambridge, 2004, p. 38.Google Scholar

  • [3]

    P. C. Matthews, J. Fluid Mech. 188 (1988), 571–583.CrossrefGoogle Scholar

  • [4]

    G. K. Batchelor and J. M. Nitsche, J. Fluid Mech. 227 (1991), 357–391.CrossrefGoogle Scholar

  • [5]

    D. Goluskin, preprint (2015), 1–66, https://arxiv.org/abs/1506.01656.Google Scholar

  • [6]

    M. S. D. Wykes and S. B.Dalziel, J. Fluid Mech. 756 (2014), 1027–1057.CrossrefGoogle Scholar

  • [7]

    R. D. Simitev and F. H. Busse, in: Proceedings of the 2010 Summer Program, Center of Turbulence Research, Stanford University, (2010), 485–492.Google Scholar

  • [8]

    N. J. Mueschke, M. J. Andrews and O. Schilling, J. Fluid Mech. 567 (2006), 27.CrossrefGoogle Scholar

  • [9]

    N. J. Mueschke and O. Schilling, Phys. Fluids 21 (2009), 014106.Google Scholar

  • [10]

    N. J. Mueschke and O. Schilling, Phys. Fluids 21 (2009), 014107.Google Scholar

  • [11]

    D. M. Snider and M. J. Andrews, Phys. Fluids A 6 (1994), 3324–3334.CrossrefGoogle Scholar

  • [12]

    G. B. Whitham, Linear and nonlinear waves, Wiley Interscience, Canada, 1999, pp. 184.Google Scholar

  • [13]

    F. H. Busse and E. W. Bolton, J. Fluid Mech. 146 (1984), 115–125.CrossrefGoogle Scholar

  • [14]

    C. Normand, J. Fluid Mech. 143 (1984), 223–242.CrossrefGoogle Scholar

  • [15]

    G. Tonda, E. W. Fossa and M. Misale, Int. J. Heat Mass Transf. 71 (2014), 451–458.CrossrefGoogle Scholar

About the article

Received: 2017-12-19

Revised: 2018-05-20

Accepted: 2018-06-08

Published Online: 2018-06-20

Published in Print: 2018-10-25

Citation Information: Journal of Non-Equilibrium Thermodynamics, Volume 43, Issue 4, Pages 289–300, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2017-0067.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in