Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year

IMPACT FACTOR 2017: 1.633
5-year IMPACT FACTOR: 1.642

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.591
Source Normalized Impact per Paper (SNIP) 2017: 1.160

See all formats and pricing
More options …
Volume 43, Issue 3


Non-equilibrium Thermodynamics of Fast Traveling Waves in a Catalytic Fixed Bed. Emergence of Near-equilibrium Spatiotemporal Dissipative Structure

Alexander P. Gerasev
  • Corresponding author
  • Boreskov Institute of Catalysis, Siberian Division, Russian Academy of Sciences, prosp. Acad. Lavrent’eva, 5, Novosibirsk 630090, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-05-19 | DOI: https://doi.org/10.1515/jnet-2018-0005


This work presents the results of the mathematical modeling of the fast traveling wave propagation phenomenon in the fixed-bed catalytic reactors according to a simple (basic) mathematical model with a reversible reaction. Qualitative and quantitative research is used to study the behavior of separatrices’ trajectories of the system’s non-linear ordinary differential equations. Special attention has been paid to the non-equilibrium thermodynamic methods. The entropy balance equation is constructed and analyzed under the assumption of the simple mathematical model of physical and chemical processes. The influence of key physical and chemical parameters on the fast traveling wave properties is studied. The phenomenon of fast traveling wave propagation in the fixed-bed catalytic reactors provides a vivid example of a spatiotemporal dissipative structure in active heterogeneous medium. These dissipative structures are shown to exist near the thermodynamic equilibrium.

Keywords: entropy production; traveling waves; spatiotemporal dissipative structures; non-linear dynamic system; fixed-bed catalyst


  • [1]

    R. J. Field and M. Burger, (eds), Oscillations and Traveling Waves in Chemical Systems, Wiley, New York, 1985.Google Scholar

  • [2]

    V. A. Vasil’ev, Yu. M. Romanovskii and V. G. Yakhno, Autowave processes in distributed kinetic systems, Sov. Phys. Usp. 22 (1979), 615–639.CrossrefGoogle Scholar

  • [3]

    D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, New York, 1969.Google Scholar

  • [4]

    G. Padberg and E. Wicke, Stabiles und instabiles Verhalten eines adiabatishen Rohrreaktors an Beispiel der katalytischen Co-Oxydation, Chem. Eng. Sci. 22 (1967), 1035–1051.CrossrefGoogle Scholar

  • [5]

    P. Fieguth and E. Wicke, Der Übergang vom Zünd/Lösch-Verhalten zu stabilen Reaktionszuständen bei einem adiabatischen Rohrreaktor, Chem. Ing. Tech. 43 (1971), 604–608.CrossrefGoogle Scholar

  • [6]

    R. A. Fisher, The wave of advance of advantageous genes, Annu. Eugen. 7 (1937), 335–369.Google Scholar

  • [7]

    A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, Investigation of the diffusion equation combined with an increase in the amount of the substance, and the use of this equation in one biological problem, Byul. Mosk. Gos. Univ. Matem. Mekh. 1 (1937), no. 6, 1–26.Google Scholar

  • [8]

    Ya. B. Zel’dovich, D. A. Frank-Kamenetskii and Theory of thermal propagation of flame, Zh. Fiz. Khim. 12 (1938), 100–105.Google Scholar

  • [9]

    Ya. B. Zel’dovich and D. A. Frank-Kamenetskii, Theory of uniform propagation of flame, Dokl. Akad. Nauk SSSR 19 (1938), 693–697.Google Scholar

  • [10]

    Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Consultants Bureau, New York, 1985.Google Scholar

  • [11]

    P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability, and Fluctuations, Wiley-Intersciences, London, 1971.Google Scholar

  • [12]

    D. Kondepudi and I. Prigogine, Modern Thermodynamics. From Heat Engines to Dissipative Structures, J. Wiley & Sons, Chichester, 1998.Google Scholar

  • [13]

    L. Onsager, Reciprocal relations in irreversible processes, I. Phys. Rev. 37 (1931), 405–426.CrossrefGoogle Scholar

  • [14]

    L. Onsager, Reciprocal relations in irreversible processes, II. Phys. Rev. 38 (1931), 2265–2279.Google Scholar

  • [15]

    I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, Charles C. Thomas, Springfield, 1955.Google Scholar

  • [16]

    M. A. Biot, Variational principles in irreversible thermodynamics with application to viscoelasticity, Phys. Rev. 97 (1955), 1463–1469.CrossrefGoogle Scholar

  • [17]

    A. P. Gerasev, Nonequilibrium thermodynamics of autowave processes in a catalytic fixed bed, Phys. Usp. 47 (2004), 991–1016.CrossrefGoogle Scholar

  • [18]

    A. P. Gerasev, Variational principles in irreversible thermodynamics with application to combustion waves, J. Non-Equilib. Thermodyn. 36 (2011) 55–73.Web of ScienceGoogle Scholar

  • [19]

    L. M. Martyushev, A. S. Nazarova and V. D. Seleznev, On the problem of the minimum entropy production in the nonequilibrium stationary state, J. Phys. A, Math. Theor. 40 (2007), 371–380.CrossrefWeb of ScienceGoogle Scholar

  • [20]

    A. P. Gerasev, N. A. Chumakova and Yu. Sh. Matros, Autowave solutions of a mathematical model of a catalytic fixed-bed with a reversible reaction, Chem. Eng. Sci. 52 (1977), 693–701.Google Scholar

  • [21]

    Th. de Donde and P. van Rysselberghe, Thermodynamic Theory of Affinity. A Book of Principles, Stanford University Press, Stanford, 1936.Google Scholar

  • [22]

    I. Prigogine and R. Defay, Chemical Thermodynamics, Longmans Green, New York, 1954.Google Scholar

  • [23]

    A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems, J. Wiley, New York, 1966.Google Scholar

  • [24]

    S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam, 1962.Google Scholar

  • [25]

    I. Gyarmati, Non-Equilibrium Thermodynamics, Field Theory and Variational Principles, Springer, New York, 1970.Google Scholar

  • [26]

    I. Prigogine, “Time, Structure and Fluctuations”. Nobelprize.org, (1977), http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1977/prigogine-lecture.pdf.Google Scholar

  • [27]

    J. Ross and P. Mazur, Some deductions from a formal statistical mechanical theory of chemical kinetics, J. Chem. Phys. 35 (1961), 19–28.CrossrefGoogle Scholar

  • [28]

    G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations, J. Wiley & Sons, New York, London, Sydney, Toronto, 1977.Google Scholar

About the article

Received: 2018-02-17

Revised: 2018-04-15

Accepted: 2018-05-02

Published Online: 2018-05-19

Published in Print: 2018-07-26

Citation Information: Journal of Non-Equilibrium Thermodynamics, Volume 43, Issue 3, Pages 221–235, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2018-0005.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in