[1]

E. Schrödinger, *What is life? The physical aspect of the living cell and mind*, Cambridge University Press, 1944. Google Scholar

[2]

M. P. Murphy, (P. Michael and L. A. J. O’Neill), *What is life? : the next fifty years : speculations on the future of biology*, Cambridge University Press, 1997. Google Scholar

[3]

J. Keenan, Availability and irreversibility in thermodynamics, *Br. J. Appl. Phys.* 2 (1951), 183. CrossrefGoogle Scholar

[4]

S. Carnot, *Reflections on the motive power of fire, and on machines fitted to develop that power*, Bachelier, Paris, 1824. Google Scholar

[5]

L. Tisza, *Generalized thermodynamics*, MIT Press, Cambridge, 1966. Google Scholar

[6]

J. Gibbs, H. Bumstead and W. Longley, 1928 The collected works of J. Willard Gibbs.

[7]

G. Gouy, About available energy, *J. Phys. II* 8 (1889), 501–518. Google Scholar

[8]

M. Pons, Irreversibility in energy processes: Non-dimensional quantification and balance, *J. Non-Equilibrium Thermodyn.* 29 (2004), 157–175. Google Scholar

[9]

A. Bejan, *Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes*, CRC Press. Google Scholar

[10]

K. H. Hoffmann, B. Andresen and P. Salamon, Measures of dissipation, *Phys. Rev. A* 39 (1989), 3618–3621. CrossrefGoogle Scholar

[11]

J. L. England, Statistical physics of self-replication, *J. Chem. Phys.* **139** (2013). Google Scholar

[12]

J. L. England, Dissipative adaptation in driven self-assembly, *Nat. Nanotechnol.* 10 (2015), 919–923. CrossrefGoogle Scholar

[13]

T. R. Gingrich, J. M. Horowitz, N. Perunov and J. L. England, Dissipation bounds all steady-state current fluctuations, *Phys. Rev. Lett.* 116 (2016), 1–5. Google Scholar

[14]

D. Brooks and E. Wiley, Evolution as an entropic phenomenon, *Evol. Theory Paths to Futur. John Wiley and Sons*, 1984 141–171. Google Scholar

[15]

E. Wiley and D. Brooks, Victims of history – a nonequilibrium approach to evolution, *Syst. Biol.* 31 (1982), 1–24. CrossrefGoogle Scholar

[16]

D. Brooks and E. Wiley *Evolution as Entropy*, University of Chicsago Press, 1988. Google Scholar

[17]

R. Swenson, Emergent attractors and the law of maximum entropy production: foundations to a theory of general evolution, *Syst. Res.* 6 (1989), 187–197. CrossrefGoogle Scholar

[18]

R. Swenson Thermodynamics, evolution, and behavior, *Handb. Comp. Psychol.*, New Garland Press, 1998, 207–218. Google Scholar

[19]

B. Gal-Or Unification of Symmetries or Asymmetries: What Should be First?, *Phys. Essays* 6 (1993), 60–65. CrossrefGoogle Scholar

[20]

E. D. Schneider and J. J. Kay, Life as a manifestation of the second law of thermodynamics, *Math. Comput. Model.* 19 (1994), 25–48. CrossrefGoogle Scholar

[21]

E. Schneider and D. Sagan, *Into the Cool: Energy Flow, Thermodynamics, and Life*, University of Chicago Press, 2005. Google Scholar

[22]

J. Kay, A nonequilibrium thermodynamic framework for discussing ecosystem integrity, *Environ. Manage.* 15 (1991), 483–495. CrossrefGoogle Scholar

[23]

P. Salamon, B. Andresen, K. H. Hoffmann, J. D. Nulton, A. M. Segall and F. L. Rohwer, Free energies of staging a scenario and perpetual motion machines of the third kind, *Proceeding of the 240 Conference: Science’s Great Challenges*, Johns Wiley and Sons, 2014 1–14. Google Scholar

[24]

A. J. Lotka, Natural Selection as a Physical Principle, *Proc. Natl. Acad. Sci. U.S.A.*, 8 (1922), 151–154. CrossrefGoogle Scholar

[25]

A. J. Lotka, Contribution to the Energetics of Evolution, *Proc. Natl. Acad. Sci. U.S.A.* 8 (1922), 147–151. CrossrefGoogle Scholar

[26]

R. Gaggioli, A Proposal: A Positive Statement of the Second Law of Thermodynamics.

[27]

C. Essex and B. Andresen, Maxwellian velocity distributions in slow time, *J. Non-Equilibrium Thermodyn* 40 (2015). Google Scholar

[28]

P. Salamon, D. Wales, A. Segall, Y. Lai and J. C. Schön, Rate constants, timescales, and free energy barriers, *J. Non-Equilibrium Thermodyn.* 41 (2015), 13–18. Google Scholar

[29]

A. Bjarne and C. Essex, Eigentimes and Very Slow Processes, *Entropy* 19 (2017), no. 9, 492. CrossrefGoogle Scholar

[30]

L. Onsager, Reciprocal relations in irreversible processes, *Phys. Rev.* 37 (1931), 405. CrossrefGoogle Scholar

[31]

L. Onsager and S. Machlup, Fluctuations and irreversible processes, *Phys. Rev.* 91 (1953), 1505. CrossrefGoogle Scholar

[32]

S. Machlup and L. Onsager, Fluctuations and irreversible process. II. Systems with kinetic energy, *Phys. Rev.* 91 (1953), 1512. CrossrefGoogle Scholar

[33]

Henri Bénard, Les tourbillons cellulaires dans une nappe liquide, *Rev. Gen. Sci. Pures Appl.* 11 (1900), 1261–1271. Google Scholar

[34]

Henri Bénard, *Les tourbillons cellulaires dans une nappe liquide propageant de la chaleur par convection: en régime permanent*, Gauthier-Villars, 1901. Google Scholar

[35]

Ernst L. Koschmieder, *Bénard cells and Taylor vortices*, Cambridge University Press, 1993. Google Scholar

[36]

G. I. Taylor, Stability of a Viscous Liquid Contained between Two Rotating Cylinders, *Phil. Trans. R. Soc. Lond. A* January (1923). Google Scholar

[37]

I. Prigogine, On Symmetry-Breaking Instabilities in Dissipative Systems, *J. Chem. Phys.* 46 (1967), 3542. CrossrefGoogle Scholar

[38]

I. Prigogine, *Thermodynamics of Irreversible Processes*, Thomas, 1955. Google Scholar

[39]

I. Prigogine and G. Nicolis, Biological order, structure and instabilities, *Q. Rev. Biophys.* 4 (1971), 107–148. CrossrefGoogle Scholar

[40]

L. Prigogine, G. Nicolis and A. Babloyantz, Thermodynamics of evolution I, *Phys. Today* 25 (1972), 38–44. CrossrefGoogle Scholar

[41]

I. Prigogine and I. Stengers, *Order out of chaos, Man’s New Dialogue*, 1984. Google Scholar

[42]

P. Glansdorff and I. Prigogine, *Structure, Stability and Fluctuations*, NY Intersci., New York, 1971. Google Scholar

[43]

I. Prigogine, Time, irreversibility and structure, *Phys. Concept. Nat.*, Springer, Dordrecht, 1973, 561–593. Google Scholar

[44]

I. Prigogine, Time, structure, and fluctuations, *Science.* 201 (1978), 777–785. CrossrefGoogle Scholar

[45]

D. Brooks, J. Collier and B. Maurer, Entropy and information in evolving biological systems, *Biol. and Philos.* 4 (1989), 407–432. CrossrefGoogle Scholar

[46]

P. Glansdorff and I. Prigogine, On a general evolution criterion in macroscopic physics, *Physica.* 30 (1964), 351–374. CrossrefGoogle Scholar

[47]

P. T. Landsberg, Can entropy and “order” increase together? **102** (1984), 171–173.

[48]

H. Morowitz *Energy Flow in Biology; Biological Organization as a Problem in Thermal Physics*, Academic Press, New York, 1968. Google Scholar

[49]

S. Frautschi, Entropy in an expanding universe, *Science.* 217 (1982), 593–599. CrossrefGoogle Scholar

[50]

D. Layzer, 1991 *Cosmogenesis: the Growth of Order in the Universe*, Oxford University Press. Google Scholar

[51]

D. Layzer, 1988 Growth of order in the universe, *Entropy, Inf. Evol. New Perspect*, 23–24. Google Scholar

[52]

B. Belousov A periodic reaction and its mechanism, *Compil. Abstr. Radiat. Med.*, 1959.

[53]

M. Eigen, W. C. Gardiner and P. Schuster, Hypercycles and compartments, *J. Theor. Biol.* 85 (1980), 407–411. CrossrefGoogle Scholar

[54]

M. Eigen and P. Schuster, The hypercycle, *Naturwissenschaften.* 65 (1978), 7–41. CrossrefGoogle Scholar

[55]

M. Eigen and P. Schuster, The hypercycle: a principle of natural self-organization, *Springer Science and Business*, Media, 2012. Google Scholar

[56]

N. Wienerm *Cybernetics or Control and Communication in the Animal and the Machine*, MIT Press, 1961. Google Scholar

[57]

F. Capra and P. L. Luisi, *The Systems View of Life: A Unifying Vision*, Cambridge University Press, 2014. Google Scholar

[58]

G. Nicolis and I. Prigogine, *Self-organization in Nonequilibrium Systems*, 1977. Google Scholar

[59]

K. Sneppen and P. Bak, Evolution as a self-organized critical phenomenon, *PNAS.* 92 (1995), 5209–5213. CrossrefGoogle Scholar

[60]

I. Prigogine 1980 From being to becoming: time and complexity in the physical sciences. W. H.

[61]

A. Turing, The chemical basis of morphogenesis, *Trans. R. Soc. Lon. B.* 273 (1952), 37–72. Google Scholar

[62]

A. Annila and E. Kuismanen, Natural hierarchy emerges from energy dispersal, *BioSystems* 95 (2009), 227–233. CrossrefGoogle Scholar

[63]

V. Sharma and A. Annila, Natural process – Natural selection, *Biophys. Chem.* 127 (2007), 123–128. CrossrefGoogle Scholar

[64]

A. Annila and S. Salthe, Physical foundations of evolutionary theory, *J. Non-Equilibrium Thermodyn.* 35 (2010), 301–321. Google Scholar

[65]

P. Luisi and F. Varela, Self-replicating micelles – a chemical version of a minimal autopoietic system, *Orig. Life Evol. Biosph.* 19 (1989), 633–643. CrossrefGoogle Scholar

[66]

H. Qian and D. A. Beard, Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium, *Biophys. Chem.* 114 (2005), 213–220. CrossrefGoogle Scholar

[67]

B. Andresen, P. Salamon and R. Berry, Thermodynamics in finite time, *Phys. Today* 37 (1984), 62–70. CrossrefGoogle Scholar

[68]

B. Andresen, Current Trends in Finite-Time Thermodynamics, *Angew. Chemie Int. Ed.* 50 (2011), 2690–2704. CrossrefGoogle Scholar

[69]

B. Andresen, P. Salamon and R. Berry, Thermodynamics in finite time: extremals for imperfect heat engines, *J. Chem. Phys.* 64 (1977), 1571–1577. Google Scholar

[70]

R. Berry *Thermodynamic Optimization of Finite-Time Processes*, 2000. Google Scholar

[71]

P. Salamon, A. Nitzan, B. Andresen and R. Berry, Minimum entropy production and the optimization of heat engines, *Phys. Rev. A* 21 (1980), 2115. CrossrefGoogle Scholar

[72]

M. Mozurkewich and R. Berry, Optimization of a heat engine based on a dissipative system, *J. Appl. Phys.* 54 (1983), 3651–3661. CrossrefGoogle Scholar

[73]

J. Chen The maximum power output and maximum efficiency of an irreversible Carnot heat engine, *J. Phys. D. Appl. Phys.* 14 (1994), 1144. Google Scholar

[74]

C. Cheng The ecological optimization of an irreversible Carnot heat engine, *J. Phys. D. Appl. Phys.* 30 (1997), 1602. CrossrefGoogle Scholar

[75]

P. Salamon, K. H. Hoffmann, S. Schubert, R. S. Berry and B. Andresen, What Conditions Make Minimum Entropy Production Equivalent to Maximum Power Production?, *J. Non-Equilibrium Thermodyn.* 26 (2001), 73–83. Google Scholar

[76]

K. H. Hoffmann, J. Burzler, A. Fischer, M. Schaller and S. Schubert, Optimal Process Paths for Endoreversible Systems, *J. Non-Equilibrium Thermodyn.* 28 (2003), 233–268. Google Scholar

[77]

W. Muschik and K. H. Hoffmann, Endoreversible Thermodynamics: A Tool for Simulating and Comparing Processes of Discrete Systems, *J. Non-Equilibrium Thermodyn.* 31 (2006), 293–317. Google Scholar

[78]

A. De Vos Endoreversible thermodynamics and chemical reactions, *J. Phys. Chem.* 95 (1991), 4534–4540. CrossrefGoogle Scholar

[79]

A. De Vos Endoreversible thermoeconomics, *Energy Convers. Manag.* 36 (1995), 1–5. CrossrefGoogle Scholar

[80]

Thor A. Bak, Peter Salamon and Bjarne Andresen, Optimal Behavior of Consecutive Chemical Reactions A⇔B⇔C, *J. Chem. Phys.* 45, (2002), 10961–10964. Google Scholar

[81]

K. Bødker Frederiksen and B. Andresen, Mitochondrial optimization using thermodynamic geometry *Recent advances in thermodynamic research including nonequilibrium thermodynamics*. Dhonge, 10–14.

[82]

P. Salamon and A. Nitzan, Finite time optimizations of a Newton’s law Carnot cycle, *J. Chem. Phys.* 74 (1981), 3546–3560. CrossrefGoogle Scholar

[83]

F. Angulo-Brown, An ecological optimization criterion for finite-time heat engines, *J. Appl. Phys.* 69 (1991), 7465–7469. CrossrefGoogle Scholar

[84]

Y. Huang, D. Sun and Y. Kang, Performance optimization for an irreversible four-temperature-level absorption heat pump, *Int. J. Therm. Sci.* 47 (2008), 479–485. CrossrefGoogle Scholar

[85]

M. H. Rubin Optimal configuration of a class of irreversible heat engines. II, *Phys. Rev. A* 19 (1979), 1277–1289. CrossrefGoogle Scholar

[86]

A. De Vos Efficiency of some heat engines at maximum-power conditions, *Am. J. Phys.* 53 (1985), 570–573. CrossrefGoogle Scholar

[87]

A. De Vos and P. van der Wel Endoreversible models for the conversion of solar energy into wind energy, *J. Non-Equilibrium Thermo.* 17 (1992), 77–89. Google Scholar

[88]

A. De Vos, The endoreversible theory of solar energy conversion: a tutorial, *Sol. Energy Mater. Sol. Cells.* 31 (1993), 75–93. CrossrefGoogle Scholar

[89]

H. Odum and R. Pinkerton, Time’s speed regulator: the optimum efficiency for maximum power output in physical and biological systems, *Am. Sci.* 43 (1955), 331–343. Google Scholar

[90]

C. Van den Broeck, Thermodynamic efficiency at maximum power, *Phys. Rev. Lett.* 95 (2005). Google Scholar

[91]

J. R. Karr et al., A Whole-Cell Computational Model Predicts Phenotype from Genotype, *Cell* 150 (2012), 389–401. CrossrefGoogle Scholar

[92]

D. A. Lipson, R. K. Monson, S. K. Schmidt and M. N. Weintraub, The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest, *Biogeochemistry* 95 (2009), 23–35. CrossrefGoogle Scholar

[93]

P. Salamon and R. Berry, Thermodynamic length and dissipated availability, *Phys. Rev. Lett.* 51 (1983), 1127. CrossrefGoogle Scholar

[94]

J. Nulton and P. Salamon, Quasistatic processes as step equilibrations, *J. Chem. Phys.* 83 (1985), 334–338. CrossrefGoogle Scholar

[95]

P. Salamon, T. N. F. Roach and F. L. Rohwer, The ladder theorem, 2017, 2–4.

[96]

S. Brody *Bioenergetics and growth*, with special reference to the efficiency complex in domestic animals, 1945. Google Scholar

[97]

B. Andresen and P. Salamon, Distillation by thermo dynamic geometry, *Thermodyn. energy Convers. and Trans.*, Springer, 2000. Google Scholar

[98]

T. De Donder and P. Van Rysselberghe, *Thermodynamic Theory of Affinity*, Stanford University Press, 1936. Google Scholar

[99]

B. Andresen, J. S. Shiner and D. E. Uehlinger, Allometric scaling and maximum efficiency in physiological eigen time, *Proc. Natl. Acad. Sci. U.S.A.* 99 (2002), 5822–5824. CrossrefGoogle Scholar

[100]

C. J. King, *Separation Processes*, Second Edition, Cent. Stud. High. Educ., 1980. Google Scholar

[101]

I. Prigogine and J. Wiame, Biologie et thermodynamique des phénomènes irréversibles, *Experientia*, 1946.

[102]

I. Lamprecht and A. Zotin, *Thermodynamics of Biological Processes*, W. De Gruyter, 1978. Google Scholar

[103]

A. A. Zotin, Equations describing changes in weight and mass-specific rate of oxygen consumption in animals during postembryonic development, *Biol. Bull.* 33 (2006), 323–331. CrossrefGoogle Scholar

[104]

I. Lamprecht Calorimetry and thermodynamics of living systems, *Thermochim. Acta* 405 (2003), 1–13. CrossrefGoogle Scholar

[105]

A. Zotin and R. Zotina, Thermodynamic aspects of developmental biology, *J. Theor. Biol.* 17 (1967), 57–75. CrossrefGoogle Scholar

[106]

S. Smith Studies in the Development of the Rainbow Trout (Salmo Irideus) I. The Heat Production and Nitrogenous Excretion, *J. Exp. Biol.* 29 (1947), 650–666. Google Scholar

[107]

C. Romijn and W. Lokhorst, Foetal heat production in the fowl, *J. Physiol.* 150 (1960), 239–249. CrossrefGoogle Scholar

[108]

J. Needham, *Chemical embryology*, Cambridge University Press, 1931. Google Scholar

[109]

A. Zotin and N. Ozernyuk, Age-related changes in oxygen consumption in the edible mussel Mytilus edulis from the White Sea, *Biol. Bull. Russ. Acad.* 31 (2004), 465–468. CrossrefGoogle Scholar

[110]

A. Zotin and N. Ozernyuk, Growth characteristics of the common mussel Mytilus edulis from the White Sea, *Biol. Bull. Russ. Acad.* 31 (2004), 377–381. CrossrefGoogle Scholar

[111]

I. Nikol’skaya, L. Radzinskaya and E. Prokof’ev, Changes in the Respiration and Weight of the House Cricket Acheta domesticus L. during Growth and Aging, *Izv. Akad. Nauk SSSR, Ser. Biol.*, 1986.

[112]

T. Alekseeva, Effect of Temperature on Energy Metabolism in Poikilotherms in Different Ontogenetic Periods, *Ext. Abstr. Cand. Sci. Diss. Moscow IBR AN SSSR* 1987.

[113]

A. N. Postnikova and A. K. Danilova, No Title *Tr. zootekh. Inst.* **3** (1936), 159.

[114]

A. K. Danilova and A. N. Postnikova, No Title, *Tr. zootekh. Inst.* **3** (1936), 133.

[115]

I. Vladimirova, T. Alekseeva and M. Nechaeva, Effect of temperature on the rate of oxygen consumption during the second half of embryonic and early postembryonic development of European pond turtle Emys, *Biol. Bull.* 32 (2005), 484–489. CrossrefGoogle Scholar

[116]

J. Davison, Body weight, cell surface, and metabolic rate in anuran Amphibia, *Biol. Bull.* 109 (1955), 407–419. CrossrefGoogle Scholar

[117]

V. Asatiani, Biokhimicheskii analiz (Biochemical Analysis), *Tbilisi: Tsodna* 1 (1962). Google Scholar

[118]

A. Zotin and R. Zotina, Thermodynamic problems of development, growth and senescence, *Zh. Obshch. Biol.* 30 (1969), 94. Google Scholar

[119]

F. Rohwer, M. Youle and D. Vosten, *Coral Reefs in the Microbial Seas*, Plaid Press, 2010. Google Scholar

[120]

A. F. Haas et al., Global microbialization of coral reefs, *Nat. Microbiol.* 1 (2016), 16042. CrossrefGoogle Scholar

[121]

T. N. F. Roach et al., Microbial bioenergetics of coral-algal interactions, *PeerJ* 5 (2017), e3423. CrossrefGoogle Scholar

[122]

K. Spitze, J. Burnson and M. Lynch, The covariance structure of life-history characters in Daphnia pulex, *Evolution* 45 (1991), 1081–1090. CrossrefGoogle Scholar

[123]

K. Spitze Chaoborus predation and life-history evolution in Daphnia pulex: temporal pattern of population diversity, fitness, and mean life history, *Evolution* 45 (1991), 82–92. Google Scholar

[124]

D. Reznick, L. Nunney and A. Tessier, Big houses, big cars, superfleas and the costs of reproduction, *Trends Ecol. Evol.* 15 (2000), 421–425. CrossrefGoogle Scholar

[125]

A. Van Noordwijk and G. de Jong, Acquisition and allocation of resources: their influence on variation in life history tactics, *Am. Nat.* 139 (1986), 749–770. Google Scholar

[126]

G. De Jong and A. Van Noordwijk, Acquisition and allocation of resources: genetic (co) variances, selection, and life histories, *Am. Nat.* 139 (1992), 749–770. CrossrefGoogle Scholar

[127]

A. Tessier, M. Leibold and J. Tsao, A fundamental trade-off in resource exploitation by Daphnia and consequences to plankton communities, *Ecology* 81 (2000), 826–841. CrossrefGoogle Scholar

[128]

K. Hammond and J. Diamond, Maximal sustained energy budgets in humans and animals, *Nature* 1 (1997), 53–84. Google Scholar

[129]

S. Secor and J. Diamond, A vertebrate model of extreme physiological regulation, *Nature* 395 (1998), 695. Google Scholar

[130]

R. A. Vollenweider Input-output models – With special reference to the phosphorus loading concept in limnology, *Schweizerische Zeitschrift für Hydrol.* 37 (1975), 53–84. Google Scholar

[131]

J. Salomonsen Examination of properties of exergy, power and ascendency along a eutrophication gradient, *Ecol. Modell.* 62 (1992), 171–181. CrossrefGoogle Scholar

[132]

J. S. Wicken, Theory of Evolution, *J. Theor. Biol.* 87 (1980), 9–23. CrossrefGoogle Scholar

[133]

D. Depew and B. Weber, *Entropy, Information, and Evolution: New Perspectives on Physical and Biological Evolution*, MIT Press, 1988. Google Scholar

[134]

R. Egel Life’s Order, Complexity, Organization, and Its Thermodynamic–Holistic Imperatives, *Life* 2 (2012), 323–363. CrossrefGoogle Scholar

[135]

J. Wicken, *Evolution, Information and Thermodynamics: Extending the Darwinian Program*, Oxford University Press, 1987. Google Scholar

[136]

B. H. Weber et al., Evolution in thermodynamic perspective: An ecological approach, *Biol. Philos.* 4 (1989), 373–405. CrossrefGoogle Scholar

[137]

K. Baverstock, Life as physics and chemistry: A system view of biology, *Prog. Biophys. Mol. Biol.* 111 (2013), 108–115. CrossrefGoogle Scholar

[138]

H. T. Odum, *Environment, Power, and Society for the Twenty-first Century: The Hierarchy of Energy*, Columbia University Press, 2007. Google Scholar

[139]

P. Salamon and J. Nulton, The geometry of separation processes: A horse-carrot theorem for steady flow systems, *EPL* 42 (1998), 571. CrossrefGoogle Scholar

[140]

E. Jimenez and P. Salamon, Optimization of a diabatic distillation column with sequential heat exchangers, *Ind. Eng. Chem. Res.* 42 (2004), 7566–7571. Google Scholar

[141]

S. Kauffman, *Investigations*, Oxford University Press, 2002. Google Scholar

[142]

T. Roach, J. Nulton, P. Sibani, F. Rohwer and P. Salamon, Entropy in the Tangled Nature Model of Evolution, *Entropy* 19 (2017), 192. CrossrefGoogle Scholar

[143]

J. Wicken, Entropy, information, and nonequilibrium evolution, *Syst. Zool.* 32 (1983), 438–443. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.