Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year

IMPACT FACTOR 2016: 1.714

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.591
Source Normalized Impact per Paper (SNIP) 2017: 1.160

See all formats and pricing
More options …
Ahead of print


Application of Finite-Time and Control Thermodynamics to Biological Processes at Multiple Scales

Ty N. F. Roach
  • Corresponding author
  • Department of Biology, 7117 San Diego State University, San Diego, CA, USA
  • Viral Information Institute, 7117 San Diego State University, San Diego, CA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Salamon
  • Viral Information Institute, 7117 San Diego State University, San Diego, CA, USA
  • Department of Mathematics, 7117 San Diego State University, San Diego, CA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ James Nulton / Bjarne Andresen / Ben Felts / Andreas Haas
  • NIOZ Royal Institute for Sea Research and Utrecht University, Den Burg, Texel, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sandi Calhoun
  • Department of Biology, 7117 San Diego State University, San Diego, CA, USA
  • Viral Information Institute, 7117 San Diego State University, San Diego, CA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nathan Robinett
  • Department of Biology, 7117 San Diego State University, San Diego, CA, USA
  • Viral Information Institute, 7117 San Diego State University, San Diego, CA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Forest Rohwer
  • Department of Biology, 7117 San Diego State University, San Diego, CA, USA
  • Viral Information Institute, 7117 San Diego State University, San Diego, CA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-08 | DOI: https://doi.org/10.1515/jnet-2018-0008


An overall synthesis of biology and non-equilibrium thermodynamics remains a challenge at the interface between the physical and life sciences. Herein, theorems from finite-time and control thermodynamics are applied to biological processes to indicate which biological strategies will succeed over different time scales. In general, living systems maximize power at the expense of efficiency during the early stages of their development while proceeding at slower rates to maximize efficiency over longer time scales. The exact combination of yield and power depends upon the constraints on the system, the degrees of freedom in question, and the time scales of the processes. It is emphasized that biological processes are not driven by entropy production but, rather, by informed exergy flow. The entropy production is the generalized friction that is minimized insofar as the constraints allow. Theorems concerning thermodynamic path length and entropy production show that there is a direct tradeoff between the efficiency of a process and the process rate. To quantify this tradeoff, the concepts of compensated heat and waste heat are introduced. Compensated heat is the exergy dissipated, which is necessary for a process to satisfy constraints. Conversely, waste heat is exergy that is dissipated as heat, but does not provide a compensatory increase in rate or other improvement. We hypothesize that it is waste heat that is minimized through natural selection. This can be seen in the strategies employed at several temporal and spatial scales, including organismal development, ecological succession, and long-term evolution. Better understanding the roles of compensated heat and waste heat in biological processes will provide novel insight into the underlying thermodynamic mechanisms involved in metabolism, ecology, and evolution.

Keywords: evolution; ecology; succession; information; entropy; exergy; minimum dissipation; maximum power; compensated heat; waste heat


  • [1]

    E. Schrödinger, What is life? The physical aspect of the living cell and mind, Cambridge University Press, 1944.Google Scholar

  • [2]

    M. P. Murphy, (P. Michael and L. A. J. O’Neill), What is life? : the next fifty years : speculations on the future of biology, Cambridge University Press, 1997.Google Scholar

  • [3]

    J. Keenan, Availability and irreversibility in thermodynamics, Br. J. Appl. Phys. 2 (1951), 183.CrossrefGoogle Scholar

  • [4]

    S. Carnot, Reflections on the motive power of fire, and on machines fitted to develop that power, Bachelier, Paris, 1824.Google Scholar

  • [5]

    L. Tisza, Generalized thermodynamics, MIT Press, Cambridge, 1966.Google Scholar

  • [6]

    J. Gibbs, H. Bumstead and W. Longley, 1928 The collected works of J. Willard Gibbs.

  • [7]

    G. Gouy, About available energy, J. Phys. II 8 (1889), 501–518.Google Scholar

  • [8]

    M. Pons, Irreversibility in energy processes: Non-dimensional quantification and balance, J. Non-Equilibrium Thermodyn. 29 (2004), 157–175.Google Scholar

  • [9]

    A. Bejan, Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes, CRC Press.Google Scholar

  • [10]

    K. H. Hoffmann, B. Andresen and P. Salamon, Measures of dissipation, Phys. Rev. A 39 (1989), 3618–3621.CrossrefGoogle Scholar

  • [11]

    J. L. England, Statistical physics of self-replication, J. Chem. Phys. 139 (2013).Google Scholar

  • [12]

    J. L. England, Dissipative adaptation in driven self-assembly, Nat. Nanotechnol. 10 (2015), 919–923.CrossrefGoogle Scholar

  • [13]

    T. R. Gingrich, J. M. Horowitz, N. Perunov and J. L. England, Dissipation bounds all steady-state current fluctuations, Phys. Rev. Lett. 116 (2016), 1–5.Google Scholar

  • [14]

    D. Brooks and E. Wiley, Evolution as an entropic phenomenon, Evol. Theory Paths to Futur. John Wiley and Sons, 1984 141–171.Google Scholar

  • [15]

    E. Wiley and D. Brooks, Victims of history – a nonequilibrium approach to evolution, Syst. Biol. 31 (1982), 1–24.CrossrefGoogle Scholar

  • [16]

    D. Brooks and E. Wiley Evolution as Entropy, University of Chicsago Press, 1988.Google Scholar

  • [17]

    R. Swenson, Emergent attractors and the law of maximum entropy production: foundations to a theory of general evolution, Syst. Res. 6 (1989), 187–197.CrossrefGoogle Scholar

  • [18]

    R. Swenson Thermodynamics, evolution, and behavior, Handb. Comp. Psychol., New Garland Press, 1998, 207–218.Google Scholar

  • [19]

    B. Gal-Or Unification of Symmetries or Asymmetries: What Should be First?, Phys. Essays 6 (1993), 60–65.CrossrefGoogle Scholar

  • [20]

    E. D. Schneider and J. J. Kay, Life as a manifestation of the second law of thermodynamics, Math. Comput. Model. 19 (1994), 25–48.CrossrefGoogle Scholar

  • [21]

    E. Schneider and D. Sagan, Into the Cool: Energy Flow, Thermodynamics, and Life, University of Chicago Press, 2005.Google Scholar

  • [22]

    J. Kay, A nonequilibrium thermodynamic framework for discussing ecosystem integrity, Environ. Manage. 15 (1991), 483–495.CrossrefGoogle Scholar

  • [23]

    P. Salamon, B. Andresen, K. H. Hoffmann, J. D. Nulton, A. M. Segall and F. L. Rohwer, Free energies of staging a scenario and perpetual motion machines of the third kind, Proceeding of the 240 Conference: Science’s Great Challenges, Johns Wiley and Sons, 2014 1–14.Google Scholar

  • [24]

    A. J. Lotka, Natural Selection as a Physical Principle, Proc. Natl. Acad. Sci. U.S.A., 8 (1922), 151–154.CrossrefGoogle Scholar

  • [25]

    A. J. Lotka, Contribution to the Energetics of Evolution, Proc. Natl. Acad. Sci. U.S.A. 8 (1922), 147–151.CrossrefGoogle Scholar

  • [26]

    R. Gaggioli, A Proposal: A Positive Statement of the Second Law of Thermodynamics.

  • [27]

    C. Essex and B. Andresen, Maxwellian velocity distributions in slow time, J. Non-Equilibrium Thermodyn 40 (2015).Google Scholar

  • [28]

    P. Salamon, D. Wales, A. Segall, Y. Lai and J. C. Schön, Rate constants, timescales, and free energy barriers, J. Non-Equilibrium Thermodyn. 41 (2015), 13–18.Google Scholar

  • [29]

    A. Bjarne and C. Essex, Eigentimes and Very Slow Processes, Entropy 19 (2017), no. 9, 492.CrossrefGoogle Scholar

  • [30]

    L. Onsager, Reciprocal relations in irreversible processes, Phys. Rev. 37 (1931), 405.CrossrefGoogle Scholar

  • [31]

    L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91 (1953), 1505.CrossrefGoogle Scholar

  • [32]

    S. Machlup and L. Onsager, Fluctuations and irreversible process. II. Systems with kinetic energy, Phys. Rev. 91 (1953), 1512.CrossrefGoogle Scholar

  • [33]

    Henri Bénard, Les tourbillons cellulaires dans une nappe liquide, Rev. Gen. Sci. Pures Appl. 11 (1900), 1261–1271.Google Scholar

  • [34]

    Henri Bénard, Les tourbillons cellulaires dans une nappe liquide propageant de la chaleur par convection: en régime permanent, Gauthier-Villars, 1901.Google Scholar

  • [35]

    Ernst L. Koschmieder, Bénard cells and Taylor vortices, Cambridge University Press, 1993.Google Scholar

  • [36]

    G. I. Taylor, Stability of a Viscous Liquid Contained between Two Rotating Cylinders, Phil. Trans. R. Soc. Lond. A January (1923).Google Scholar

  • [37]

    I. Prigogine, On Symmetry-Breaking Instabilities in Dissipative Systems, J. Chem. Phys. 46 (1967), 3542.CrossrefGoogle Scholar

  • [38]

    I. Prigogine, Thermodynamics of Irreversible Processes, Thomas, 1955.Google Scholar

  • [39]

    I. Prigogine and G. Nicolis, Biological order, structure and instabilities, Q. Rev. Biophys. 4 (1971), 107–148.CrossrefGoogle Scholar

  • [40]

    L. Prigogine, G. Nicolis and A. Babloyantz, Thermodynamics of evolution I, Phys. Today 25 (1972), 38–44.CrossrefGoogle Scholar

  • [41]

    I. Prigogine and I. Stengers, Order out of chaos, Man’s New Dialogue, 1984.Google Scholar

  • [42]

    P. Glansdorff and I. Prigogine, Structure, Stability and Fluctuations, NY Intersci., New York, 1971.Google Scholar

  • [43]

    I. Prigogine, Time, irreversibility and structure, Phys. Concept. Nat., Springer, Dordrecht, 1973, 561–593.Google Scholar

  • [44]

    I. Prigogine, Time, structure, and fluctuations, Science. 201 (1978), 777–785.CrossrefGoogle Scholar

  • [45]

    D. Brooks, J. Collier and B. Maurer, Entropy and information in evolving biological systems, Biol. and Philos. 4 (1989), 407–432.CrossrefGoogle Scholar

  • [46]

    P. Glansdorff and I. Prigogine, On a general evolution criterion in macroscopic physics, Physica. 30 (1964), 351–374.CrossrefGoogle Scholar

  • [47]

    P. T. Landsberg, Can entropy and “order” increase together? 102 (1984), 171–173.

  • [48]

    H. Morowitz Energy Flow in Biology; Biological Organization as a Problem in Thermal Physics, Academic Press, New York, 1968.Google Scholar

  • [49]

    S. Frautschi, Entropy in an expanding universe, Science. 217 (1982), 593–599.CrossrefGoogle Scholar

  • [50]

    D. Layzer, 1991 Cosmogenesis: the Growth of Order in the Universe, Oxford University Press.Google Scholar

  • [51]

    D. Layzer, 1988 Growth of order in the universe, Entropy, Inf. Evol. New Perspect, 23–24.Google Scholar

  • [52]

    B. Belousov A periodic reaction and its mechanism, Compil. Abstr. Radiat. Med., 1959.

  • [53]

    M. Eigen, W. C. Gardiner and P. Schuster, Hypercycles and compartments, J. Theor. Biol. 85 (1980), 407–411.CrossrefGoogle Scholar

  • [54]

    M. Eigen and P. Schuster, The hypercycle, Naturwissenschaften. 65 (1978), 7–41.CrossrefGoogle Scholar

  • [55]

    M. Eigen and P. Schuster, The hypercycle: a principle of natural self-organization, Springer Science and Business, Media, 2012.Google Scholar

  • [56]

    N. Wienerm Cybernetics or Control and Communication in the Animal and the Machine, MIT Press, 1961.Google Scholar

  • [57]

    F. Capra and P. L. Luisi, The Systems View of Life: A Unifying Vision, Cambridge University Press, 2014.Google Scholar

  • [58]

    G. Nicolis and I. Prigogine, Self-organization in Nonequilibrium Systems, 1977.Google Scholar

  • [59]

    K. Sneppen and P. Bak, Evolution as a self-organized critical phenomenon, PNAS. 92 (1995), 5209–5213.CrossrefGoogle Scholar

  • [60]

    I. Prigogine 1980 From being to becoming: time and complexity in the physical sciences. W. H.

  • [61]

    A. Turing, The chemical basis of morphogenesis, Trans. R. Soc. Lon. B. 273 (1952), 37–72.Google Scholar

  • [62]

    A. Annila and E. Kuismanen, Natural hierarchy emerges from energy dispersal, BioSystems 95 (2009), 227–233.CrossrefGoogle Scholar

  • [63]

    V. Sharma and A. Annila, Natural process – Natural selection, Biophys. Chem. 127 (2007), 123–128.CrossrefGoogle Scholar

  • [64]

    A. Annila and S. Salthe, Physical foundations of evolutionary theory, J. Non-Equilibrium Thermodyn. 35 (2010), 301–321.Google Scholar

  • [65]

    P. Luisi and F. Varela, Self-replicating micelles – a chemical version of a minimal autopoietic system, Orig. Life Evol. Biosph. 19 (1989), 633–643.CrossrefGoogle Scholar

  • [66]

    H. Qian and D. A. Beard, Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium, Biophys. Chem. 114 (2005), 213–220.CrossrefGoogle Scholar

  • [67]

    B. Andresen, P. Salamon and R. Berry, Thermodynamics in finite time, Phys. Today 37 (1984), 62–70.CrossrefGoogle Scholar

  • [68]

    B. Andresen, Current Trends in Finite-Time Thermodynamics, Angew. Chemie Int. Ed. 50 (2011), 2690–2704.CrossrefGoogle Scholar

  • [69]

    B. Andresen, P. Salamon and R. Berry, Thermodynamics in finite time: extremals for imperfect heat engines, J. Chem. Phys. 64 (1977), 1571–1577.Google Scholar

  • [70]

    R. Berry Thermodynamic Optimization of Finite-Time Processes, 2000.Google Scholar

  • [71]

    P. Salamon, A. Nitzan, B. Andresen and R. Berry, Minimum entropy production and the optimization of heat engines, Phys. Rev. A 21 (1980), 2115.CrossrefGoogle Scholar

  • [72]

    M. Mozurkewich and R. Berry, Optimization of a heat engine based on a dissipative system, J. Appl. Phys. 54 (1983), 3651–3661.CrossrefGoogle Scholar

  • [73]

    J. Chen The maximum power output and maximum efficiency of an irreversible Carnot heat engine, J. Phys. D. Appl. Phys. 14 (1994), 1144.Google Scholar

  • [74]

    C. Cheng The ecological optimization of an irreversible Carnot heat engine, J. Phys. D. Appl. Phys. 30 (1997), 1602.CrossrefGoogle Scholar

  • [75]

    P. Salamon, K. H. Hoffmann, S. Schubert, R. S. Berry and B. Andresen, What Conditions Make Minimum Entropy Production Equivalent to Maximum Power Production?, J. Non-Equilibrium Thermodyn. 26 (2001), 73–83.Google Scholar

  • [76]

    K. H. Hoffmann, J. Burzler, A. Fischer, M. Schaller and S. Schubert, Optimal Process Paths for Endoreversible Systems, J. Non-Equilibrium Thermodyn. 28 (2003), 233–268.Google Scholar

  • [77]

    W. Muschik and K. H. Hoffmann, Endoreversible Thermodynamics: A Tool for Simulating and Comparing Processes of Discrete Systems, J. Non-Equilibrium Thermodyn. 31 (2006), 293–317.Google Scholar

  • [78]

    A. De Vos Endoreversible thermodynamics and chemical reactions, J. Phys. Chem. 95 (1991), 4534–4540.CrossrefGoogle Scholar

  • [79]

    A. De Vos Endoreversible thermoeconomics, Energy Convers. Manag. 36 (1995), 1–5.CrossrefGoogle Scholar

  • [80]

    Thor A. Bak, Peter Salamon and Bjarne Andresen, Optimal Behavior of Consecutive Chemical Reactions A⇔B⇔C, J. Chem. Phys. 45, (2002), 10961–10964.Google Scholar

  • [81]

    K. Bødker Frederiksen and B. Andresen, Mitochondrial optimization using thermodynamic geometry Recent advances in thermodynamic research including nonequilibrium thermodynamics. Dhonge, 10–14.

  • [82]

    P. Salamon and A. Nitzan, Finite time optimizations of a Newton’s law Carnot cycle, J. Chem. Phys. 74 (1981), 3546–3560.CrossrefGoogle Scholar

  • [83]

    F. Angulo-Brown, An ecological optimization criterion for finite-time heat engines, J. Appl. Phys. 69 (1991), 7465–7469.CrossrefGoogle Scholar

  • [84]

    Y. Huang, D. Sun and Y. Kang, Performance optimization for an irreversible four-temperature-level absorption heat pump, Int. J. Therm. Sci. 47 (2008), 479–485.CrossrefGoogle Scholar

  • [85]

    M. H. Rubin Optimal configuration of a class of irreversible heat engines. II, Phys. Rev. A 19 (1979), 1277–1289.CrossrefGoogle Scholar

  • [86]

    A. De Vos Efficiency of some heat engines at maximum-power conditions, Am. J. Phys. 53 (1985), 570–573.CrossrefGoogle Scholar

  • [87]

    A. De Vos and P. van der Wel Endoreversible models for the conversion of solar energy into wind energy, J. Non-Equilibrium Thermo. 17 (1992), 77–89.Google Scholar

  • [88]

    A. De Vos, The endoreversible theory of solar energy conversion: a tutorial, Sol. Energy Mater. Sol. Cells. 31 (1993), 75–93.CrossrefGoogle Scholar

  • [89]

    H. Odum and R. Pinkerton, Time’s speed regulator: the optimum efficiency for maximum power output in physical and biological systems, Am. Sci. 43 (1955), 331–343.Google Scholar

  • [90]

    C. Van den Broeck, Thermodynamic efficiency at maximum power, Phys. Rev. Lett. 95 (2005).Google Scholar

  • [91]

    J. R. Karr et al., A Whole-Cell Computational Model Predicts Phenotype from Genotype, Cell 150 (2012), 389–401.CrossrefGoogle Scholar

  • [92]

    D. A. Lipson, R. K. Monson, S. K. Schmidt and M. N. Weintraub, The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest, Biogeochemistry 95 (2009), 23–35.CrossrefGoogle Scholar

  • [93]

    P. Salamon and R. Berry, Thermodynamic length and dissipated availability, Phys. Rev. Lett. 51 (1983), 1127.CrossrefGoogle Scholar

  • [94]

    J. Nulton and P. Salamon, Quasistatic processes as step equilibrations, J. Chem. Phys. 83 (1985), 334–338.CrossrefGoogle Scholar

  • [95]

    P. Salamon, T. N. F. Roach and F. L. Rohwer, The ladder theorem, 2017, 2–4.

  • [96]

    S. Brody Bioenergetics and growth, with special reference to the efficiency complex in domestic animals, 1945.Google Scholar

  • [97]

    B. Andresen and P. Salamon, Distillation by thermo dynamic geometry, Thermodyn. energy Convers. and Trans., Springer, 2000.Google Scholar

  • [98]

    T. De Donder and P. Van Rysselberghe, Thermodynamic Theory of Affinity, Stanford University Press, 1936.Google Scholar

  • [99]

    B. Andresen, J. S. Shiner and D. E. Uehlinger, Allometric scaling and maximum efficiency in physiological eigen time, Proc. Natl. Acad. Sci. U.S.A. 99 (2002), 5822–5824.CrossrefGoogle Scholar

  • [100]

    C. J. King, Separation Processes, Second Edition, Cent. Stud. High. Educ., 1980.Google Scholar

  • [101]

    I. Prigogine and J. Wiame, Biologie et thermodynamique des phénomènes irréversibles, Experientia, 1946.

  • [102]

    I. Lamprecht and A. Zotin, Thermodynamics of Biological Processes, W. De Gruyter, 1978.Google Scholar

  • [103]

    A. A. Zotin, Equations describing changes in weight and mass-specific rate of oxygen consumption in animals during postembryonic development, Biol. Bull. 33 (2006), 323–331.CrossrefGoogle Scholar

  • [104]

    I. Lamprecht Calorimetry and thermodynamics of living systems, Thermochim. Acta 405 (2003), 1–13.CrossrefGoogle Scholar

  • [105]

    A. Zotin and R. Zotina, Thermodynamic aspects of developmental biology, J. Theor. Biol. 17 (1967), 57–75.CrossrefGoogle Scholar

  • [106]

    S. Smith Studies in the Development of the Rainbow Trout (Salmo Irideus) I. The Heat Production and Nitrogenous Excretion, J. Exp. Biol. 29 (1947), 650–666.Google Scholar

  • [107]

    C. Romijn and W. Lokhorst, Foetal heat production in the fowl, J. Physiol. 150 (1960), 239–249.CrossrefGoogle Scholar

  • [108]

    J. Needham, Chemical embryology, Cambridge University Press, 1931.Google Scholar

  • [109]

    A. Zotin and N. Ozernyuk, Age-related changes in oxygen consumption in the edible mussel Mytilus edulis from the White Sea, Biol. Bull. Russ. Acad. 31 (2004), 465–468.CrossrefGoogle Scholar

  • [110]

    A. Zotin and N. Ozernyuk, Growth characteristics of the common mussel Mytilus edulis from the White Sea, Biol. Bull. Russ. Acad. 31 (2004), 377–381.CrossrefGoogle Scholar

  • [111]

    I. Nikol’skaya, L. Radzinskaya and E. Prokof’ev, Changes in the Respiration and Weight of the House Cricket Acheta domesticus L. during Growth and Aging, Izv. Akad. Nauk SSSR, Ser. Biol., 1986.

  • [112]

    T. Alekseeva, Effect of Temperature on Energy Metabolism in Poikilotherms in Different Ontogenetic Periods, Ext. Abstr. Cand. Sci. Diss. Moscow IBR AN SSSR 1987.

  • [113]

    A. N. Postnikova and A. K. Danilova, No Title Tr. zootekh. Inst. 3 (1936), 159.

  • [114]

    A. K. Danilova and A. N. Postnikova, No Title, Tr. zootekh. Inst. 3 (1936), 133.

  • [115]

    I. Vladimirova, T. Alekseeva and M. Nechaeva, Effect of temperature on the rate of oxygen consumption during the second half of embryonic and early postembryonic development of European pond turtle Emys, Biol. Bull. 32 (2005), 484–489.CrossrefGoogle Scholar

  • [116]

    J. Davison, Body weight, cell surface, and metabolic rate in anuran Amphibia, Biol. Bull. 109 (1955), 407–419.CrossrefGoogle Scholar

  • [117]

    V. Asatiani, Biokhimicheskii analiz (Biochemical Analysis), Tbilisi: Tsodna 1 (1962).Google Scholar

  • [118]

    A. Zotin and R. Zotina, Thermodynamic problems of development, growth and senescence, Zh. Obshch. Biol. 30 (1969), 94.Google Scholar

  • [119]

    F. Rohwer, M. Youle and D. Vosten, Coral Reefs in the Microbial Seas, Plaid Press, 2010.Google Scholar

  • [120]

    A. F. Haas et al., Global microbialization of coral reefs, Nat. Microbiol. 1 (2016), 16042.CrossrefGoogle Scholar

  • [121]

    T. N. F. Roach et al., Microbial bioenergetics of coral-algal interactions, PeerJ 5 (2017), e3423.CrossrefGoogle Scholar

  • [122]

    K. Spitze, J. Burnson and M. Lynch, The covariance structure of life-history characters in Daphnia pulex, Evolution 45 (1991), 1081–1090.CrossrefGoogle Scholar

  • [123]

    K. Spitze Chaoborus predation and life-history evolution in Daphnia pulex: temporal pattern of population diversity, fitness, and mean life history, Evolution 45 (1991), 82–92.Google Scholar

  • [124]

    D. Reznick, L. Nunney and A. Tessier, Big houses, big cars, superfleas and the costs of reproduction, Trends Ecol. Evol. 15 (2000), 421–425.CrossrefGoogle Scholar

  • [125]

    A. Van Noordwijk and G. de Jong, Acquisition and allocation of resources: their influence on variation in life history tactics, Am. Nat. 139 (1986), 749–770.Google Scholar

  • [126]

    G. De Jong and A. Van Noordwijk, Acquisition and allocation of resources: genetic (co) variances, selection, and life histories, Am. Nat. 139 (1992), 749–770.CrossrefGoogle Scholar

  • [127]

    A. Tessier, M. Leibold and J. Tsao, A fundamental trade-off in resource exploitation by Daphnia and consequences to plankton communities, Ecology 81 (2000), 826–841.CrossrefGoogle Scholar

  • [128]

    K. Hammond and J. Diamond, Maximal sustained energy budgets in humans and animals, Nature 1 (1997), 53–84.Google Scholar

  • [129]

    S. Secor and J. Diamond, A vertebrate model of extreme physiological regulation, Nature 395 (1998), 695.Google Scholar

  • [130]

    R. A. Vollenweider Input-output models – With special reference to the phosphorus loading concept in limnology, Schweizerische Zeitschrift für Hydrol. 37 (1975), 53–84.Google Scholar

  • [131]

    J. Salomonsen Examination of properties of exergy, power and ascendency along a eutrophication gradient, Ecol. Modell. 62 (1992), 171–181.CrossrefGoogle Scholar

  • [132]

    J. S. Wicken, Theory of Evolution, J. Theor. Biol. 87 (1980), 9–23.CrossrefGoogle Scholar

  • [133]

    D. Depew and B. Weber, Entropy, Information, and Evolution: New Perspectives on Physical and Biological Evolution, MIT Press, 1988.Google Scholar

  • [134]

    R. Egel Life’s Order, Complexity, Organization, and Its Thermodynamic–Holistic Imperatives, Life 2 (2012), 323–363.CrossrefGoogle Scholar

  • [135]

    J. Wicken, Evolution, Information and Thermodynamics: Extending the Darwinian Program, Oxford University Press, 1987.Google Scholar

  • [136]

    B. H. Weber et al., Evolution in thermodynamic perspective: An ecological approach, Biol. Philos. 4 (1989), 373–405.CrossrefGoogle Scholar

  • [137]

    K. Baverstock, Life as physics and chemistry: A system view of biology, Prog. Biophys. Mol. Biol. 111 (2013), 108–115.CrossrefGoogle Scholar

  • [138]

    H. T. Odum, Environment, Power, and Society for the Twenty-first Century: The Hierarchy of Energy, Columbia University Press, 2007.Google Scholar

  • [139]

    P. Salamon and J. Nulton, The geometry of separation processes: A horse-carrot theorem for steady flow systems, EPL 42 (1998), 571.CrossrefGoogle Scholar

  • [140]

    E. Jimenez and P. Salamon, Optimization of a diabatic distillation column with sequential heat exchangers, Ind. Eng. Chem. Res. 42 (2004), 7566–7571.Google Scholar

  • [141]

    S. Kauffman, Investigations, Oxford University Press, 2002.Google Scholar

  • [142]

    T. Roach, J. Nulton, P. Sibani, F. Rohwer and P. Salamon, Entropy in the Tangled Nature Model of Evolution, Entropy 19 (2017), 192.CrossrefGoogle Scholar

  • [143]

    J. Wicken, Entropy, information, and nonequilibrium evolution, Syst. Zool. 32 (1983), 438–443.CrossrefGoogle Scholar

About the article

Received: 2018-03-05

Revised: 2018-04-27

Accepted: 2018-05-02

Published Online: 2018-06-08

The authors thank the National Science Foundation for providing funding which supported this research in the form of a Graduate Research Fellowship provided to T.N.F.R.

Citation Information: Journal of Non-Equilibrium Thermodynamics, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2018-0008.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in