Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year


IMPACT FACTOR 2016: 1.714

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.591
Source Normalized Impact per Paper (SNIP) 2017: 1.160

Online
ISSN
1437-4358
See all formats and pricing
More options …
Ahead of print

Issues

Separation Performance of Nanostructured Ceramic Membranes: Analytical Model Development

Mashallah Rezakazemi
  • Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Saeed Shirazian
  • Corresponding author
  • Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-14 | DOI: https://doi.org/10.1515/jnet-2018-0013

Abstract

Nanostructured ceramic membranes have shown considerable separation performance. In this work, an analytical model is developed to evaluate the separation performance of porous ceramic membranes in gas separation applications. The model takes into account three layers, i. e., (1) active layer, (2) interlayer, and (3) support layer. For estimation of sorption at the interface of feed stream and membrane, the partition coefficient model was used and the unsteady-state conservation of mass equation coupled to molecular models of the diffusivity coefficient was used to predict the permeation of penetrant hydrogen gas through a ceramic membrane. It was observed that the model can be readily applied to other systems of interest as a predictive tool.

Keywords: hydrogen separation; ceramic membranes; simulation; mechanistic model; nanostructured materials

References

  • [1]

    M. Rezakazemi, A. Dashti, M. Asghari and S. Shirazian, H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS, Int. J. Hydrog. Energy 42 (2017), 15211–15225.Google Scholar

  • [2]

    M. Rostamizadeh, M. Rezakazemi, K. Shahidi and T. Mohammadi, Gas permeation through H2-selective mixed matrix membranes: Experimental and neural network modeling, Int. J. Hydrog. Energy 38 (2013), 1128–1135.Google Scholar

  • [3]

    M. Rezakazemi and T. Mohammadi, Gas sorption in H2-selective mixed matrix membranes: Experimental and neural network modeling, Int. J. Hydrog. Energy 38 (2013), 14035–14041.Google Scholar

  • [4]

    M. Rezakazemi, K. Shahidi and T. Mohammadi, Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane, Int. J. Hydrog. Energy 37 (2012), 17275–17284.CrossrefGoogle Scholar

  • [5]

    M. Rezakazemi, K. Shahidi and T. Mohammadi, Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes, Int. J. Hydrog. Energy 37 (2012), 14576–14589.CrossrefGoogle Scholar

  • [6]

    A. Dashti, H. R. Harami and M. Rezakazemi, Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system, Int. J. Hydrog. Energy 43 (2018), 6614–6624.CrossrefGoogle Scholar

  • [7]

    M. Rezakazemi, A. Ebadi Amooghin, M. M. Montazer-Rahmati, A. F. Ismail and T. Matsuura, State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions, Prog. Polym. Sci. 39 (2014), 817–861.Google Scholar

  • [8]

    S. Shirazian and S. N. Ashrafizadeh, Near-critical extraction of the fermentation products by membrane contactors: A mass transfer simulation, Ind. Eng. Chem. Res. 50 (2011), 2245–2253.CrossrefGoogle Scholar

  • [9]

    S. M. R. Razavi, M. Rezakazemi, A. B. Albadarin and S. Shirazian, Simulation of CO2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors, Chem. Eng. Process., Process. Intensif. 108 (2016), 27–34.Google Scholar

  • [10]

    F. Fadaei, V. Hoshyargar, S. Shirazian and S. N. Ashrafizadeh, Mass transfer simulation of ion separation by nanofiltration considering electrical and dielectrical effects, Desalination 284 (2012), 316–323.CrossrefGoogle Scholar

  • [11]

    G. Mehdi, F. Safoora and S. Saeed, Modeling of water transport through nanopores of membranes in direct-contact membrane distillation process, Polym. Eng. Sci. 54 (2014), 660–666.CrossrefGoogle Scholar

  • [12]

    R. S. M. Reza, S. Saeed and N. M. Sattari, Investigations on the ability of di-isopropanol amine solution for removal of CO2 from natural gas in porous polymeric membranes, Polym. Eng. Sci. 55 (2015), 598–603.CrossrefGoogle Scholar

  • [13]

    M. Hemmati, N. Nazari, A. Hemmati and S. Shirazian, Phenol removal from wastewater by means of nanoporous membrane contactors, J. Ind. Eng. Chem. 21 (2015), 1410–1416.CrossrefGoogle Scholar

  • [14]

    M. Rezakazemi, M. Sadrzadeh and T. Matsuura, Thermally stable polymers for advanced high-performance gas separation membranes, Prog. Energy Combust. Sci. 66 (2018), 1–41.CrossrefGoogle Scholar

  • [15]

    M. Fasihi, S. Shirazian, A. Marjani and M. Rezakazemi, Computational fluid dynamics simulation of transport phenomena in ceramic membranes for SO2 separation, Math. Comput. Model. 56 (2012), 278–286.CrossrefGoogle Scholar

  • [16]

    M. Rezakazemi, S. Mirzaei, M. Asghari and J. Ivakpour, Aluminum oxide nanoparticles for highly efficient asphaltene separation from crude oil using ceramic membrane technology, Oil Gas Sci. Technol., Rev. IFP Energies nouvelles 72 (2017), 34.CrossrefGoogle Scholar

  • [17]

    T. Mohammadi, M. Maghami and M. Rezakazemi, High loaded synthetic hazardous wastewater treatment using lab-scale submerged ceramic membrane bioreactor, Period. Polytech., Chem. Eng. (2017), 1–6.Google Scholar

  • [18]

    S. Shirazian, M. Rezakazemi, A. Marjani and M. S. Rafivahid, Development of a mass transfer model for simulation of sulfur dioxide removal in ceramic membrane contactors, Asia-Pac. J. Chem. Eng. 7 (2012), 828–834.CrossrefGoogle Scholar

  • [19]

    S. Shirazian and S. N. Ashrafizadeh, Synthesis of substrate-modified LTA zeolite membranes for dehydration of natural gas, Fuel 148 (2015), 112–119.CrossrefGoogle Scholar

  • [20]

    S. Shirazian and S. N. Ashrafizadeh, LTA and ion-exchanged LTA zeolite membranes for dehydration of natural gas, J. Ind. Eng. Chem. 22 (2015), 132–137.CrossrefGoogle Scholar

  • [21]

    F. Gallucci, E. Fernandez, P. Corengia and M. van Sint Annaland, Recent advances on membranes and membrane reactors for hydrogen production, Chem. Eng. Sci. 92 (2013), 40–66.CrossrefGoogle Scholar

  • [22]

    Z. D. Hendren, J. Brant and M. R. Wiesner, Surface modification of nanostructured ceramic membranes for direct contact membrane distillation, J. Membr. Sci. 331 (2009), 1–10.CrossrefGoogle Scholar

  • [23]

    M. Asgarpour Khansary, A. Marjani and S. Shirazian, Prediction of carbon dioxide sorption in polymers for capture and storage feasibility analysis, Chem. Eng. Res. Des. 120 (2017), 254–258.CrossrefGoogle Scholar

  • [24]

    M. Ghadiri, M. Mohammadi, M. Asadollahzadeh and S. Shirazian, Molecular separation in liquid phase: Development of mechanistic model in membrane separation of organic compounds, J. Mol. Liq. 262 (2018), 336–344.CrossrefGoogle Scholar

  • [25]

    M. A. Khansary, A. Marjani and S. Shirazian, On the search of rigorous thermo-kinetic model for wet phase inversion technique, J. Membr. Sci. 538 (2017), 18–33.CrossrefGoogle Scholar

  • [26]

    M. Mohammadi, M. Asadollahzadeh and S. Shirazian, Molecular-level understanding of supported ionic liquid membranes for gas separation, J. Mol. Liq. 262 (2018), 230–236.CrossrefGoogle Scholar

  • [27]

    H. Nazem, C. Ghotbi, M. H. Zare and S. Shirazian, Experimental investigation and thermodynamic modeling of amino acids partitioning in a water/ionic liquid system, J. Mol. Liq. 260 (2018), 386–390.CrossrefGoogle Scholar

  • [28]

    A. Sadeghi, H. Nazem, M. Rezakazemi and S. Shirazian, Predictive construction of phase diagram of ternary solutions containing polymer/solvent/nonsolvent using modified Flory-Huggins model, J. Mol. Liq. 263 (2018), 282–287.CrossrefGoogle Scholar

  • [29]

    M. Sajjia, S. Shirazian, D. Egan, J. Iqbal, A. B. Albadarin, M. Southern et al., Mechanistic modelling of industrial-scale roller compactor ‘Freund TF-MINI model’, Comput. Chem. Eng. 104 (2017), 141–150.CrossrefGoogle Scholar

  • [30]

    S. Shirazian, S. Darwish, M. Kuhs, D. M. Croker and G. M. Walker, Regime-separated approach for population balance modelling of continuous wet granulation of pharmaceutical formulations, Powder Technol. 325 (2018), 420–428.CrossrefGoogle Scholar

  • [31]

    M. Asgarpour Khansary, A. Kazemi Nezhad Estahbanati, B. Shams, A. Marjani and S. Shirazian, Correlation of sorption-induced swelling in polymeric films with reference to attenuated total reflectance Fourier-transform infrared spectroscopy data, Eur. Polym. J. 91 (2017), 429–435.CrossrefGoogle Scholar

  • [32]

    A. Farajnezhad, O. A. Afshar, M. A. Khansary, S. Shirazian and M. Ghadiri, Correlation of interaction parameters in Wilson, NRTL and UNIQUAC models using theoretical methods, Fluid Phase Equilib. 417 (2016), 181–186.CrossrefGoogle Scholar

  • [33]

    A. Ghasemi, M. Asgarpour Khansary, A. Marjani and S. Shirazian, Using quantum chemical modeling and calculations for evaluation of cellulose potential for estrogen micropollutants removal from water effluents, Chemosphere 178 (2017), 411–423.CrossrefGoogle Scholar

  • [34]

    L. Keshavarz, M. A. Khansary and S. Shirazian, Phase diagram of ternary polymeric solutions containing nonsolvent/solvent/polymer: Theoretical calculation and experimental validation, Polymer 73 (2015), 1–8.CrossrefGoogle Scholar

  • [35]

    M. A. Khansary, A. H. Sani and S. Shirazian, Mathematical-thermodynamic solubility model developed by the application of discrete Volterra functional series theory, Fluid Phase Equilib. 385 (2015), 205–211.CrossrefGoogle Scholar

  • [36]

    S. Moradi, Z. Rajabi, M. Mohammadi, M. Salimi, S. S. Homami, M. K. Seydei et al., 3 dimensional hydrodynamic analysis of concentric draft tube airlift reactors with different tube diameters, Math. Comput. Model. 57 (2013), 1184–1189.CrossrefGoogle Scholar

  • [37]

    M. Sadrzadeh, M. Rezakazemi and T. Mohammadi, Fundamentals and Measurement Techniques for Gas Transport in Polymers, in: Transport Properties of Polymeric Membranes, ed. R. Wilson, A. K. S, S. C. George, Elsevier, 2018, pp. 391–423.Google Scholar

  • [38]

    M. A. Khansary, M. Mellat, S. H. Saadat, M. Fasihi-Ramandi, M. Kamali and R. A. Taheri, An enquiry on appropriate selection of polymers for preparation of polymeric nanosorbents and nanofiltration/ultrafiltration membranes for hormone micropollutants removal from water effluents, Chemosphere 168 (2017), 91–99.CrossrefGoogle Scholar

  • [39]

    M. Asgarpour Khansary, S. Shirazian and M. Asadollahzadeh, Polymer-water partition coefficients in polymeric passive samplers, Environ. Sci. Pollut. Res. Int. 24 (2017), 2627–2631.CrossrefGoogle Scholar

  • [40]

    D. W. V. Krevelen and K. T. Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions 4th ed., Elsevier.Google Scholar

  • [41]

    I. Sanchez and M. Stone, Statistical Thermodynamics of Polymer Solutions and Blends, John Wiley & Sons, Inc. 2000.Google Scholar

  • [42]

    M. Rezakazemi, A. Marjani and S. Shirazian, Development of a group contribution method based on UNIFAC groups for the estimation of vapor pressures of pure hydrocarbon compounds, Chem. Eng. Technol. 36 (2013), 483–491.CrossrefGoogle Scholar

  • [43]

    A. Marjani, M. Rezakazemi and S. Shirazian, Vapor pressure prediction using group contribution method, Orient. J. Chem. 27 (2011), 1331–1335.Google Scholar

  • [44]

    B. E. Poling, J. M. Prausnitz and J. P. O’Connell, Properties of Gases and Liquids, 4th ed., McGraw-Hill Professional, 1987.Google Scholar

  • [45]

    D. Boudouris, L. Constantinou and C. Panayiotou, A group contribution estimation of the thermodynamic properties of polymers, Ind. Eng. Chem. Res. 36 (1997), 3968–3973.CrossrefGoogle Scholar

  • [46]

    L. Constantinou and R. Gani, New group contribution method for estimating properties of pure compounds, AIChE J. 40 (1994), 1697–1710.CrossrefGoogle Scholar

  • [47]

    I. C. Sanchez and R. H. Lacombe, Statistical thermodynamics of polymer solutions, Macromolecules 11 (1978), 1145–1156.CrossrefGoogle Scholar

  • [48]

    R. Haberman, Applied Partial Differential Equations; with Fourier Series and Boundary Value Problem, 4th ed., Pearson Education, Inc., 2004.Google Scholar

  • [49]

    W. E. Schiesser and G. W. Griffiths, A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab, Cambridge University Press, New York, 2009.Google Scholar

  • [50]

    M. Ali Aroon and M. A. Khansary, Generalized similarity transformation method applied to partial differential equations (PDEs) in falling film mass transfer, Comput. Chem. Eng. 101 (2017), 73–80.CrossrefGoogle Scholar

  • [51]

    Wolfram Mathematica, Mathematica, 2014.

  • [52]

    D. Dubin, Numerical and Analytical Methods for Scientists and Engineers Using Mathematica, John Wiley & Sons, Inc., New Jersey, 2003.Google Scholar

  • [53]

    R. S. Prabhakar, T. C. Merkel, B. D. Freeman, T. Imizu and A. Higuchi, Sorption and transport properties of propane and perfluoropropane in Poly(dimethylsiloxane) and Poly(1-trimethylsilyl-1-propyne), Macromolecules 38 (2005), 1899–1910.CrossrefGoogle Scholar

  • [54]

    R. S. Prabhakar, M. G. De Angelis, G. C. Sarti, B. D. Freeman and M. C. Coughlin, Gas and vapor sorption, permeation, and diffusion in Poly(tetrafluoroethylene-co-perfluoromethyl vinyl ether), Macromolecules 38 (2005), 7043–7055.CrossrefGoogle Scholar

  • [55]

    S.-U. Hong, Prediction of polymer/solvent diffusion behavior using free-volume theory, Ind. Eng. Chem. Res. 34 (1995), 2536–2544.CrossrefGoogle Scholar

  • [56]

    J. L. Duda, J. S. Vrentas, S. T. Ju and H. T. Liu, Prediction of diffusion coefficients for polymer-solvent systems, AIChE J. 28 (1982), 279–285.CrossrefGoogle Scholar

  • [57]

    M. A. Khansary, Vapor pressure and Flory-Huggins interaction parameters in binary polymeric solutions, Korean J. Chem. Eng. 33 (2016), 1402–1407.CrossrefGoogle Scholar

  • [58]

    L. A. F. Coelho, J. V. Oliveira and F. W. Tavares, Dense fluid self-diffusion coefficient calculations using perturbation theory and molecular dynamics, Braz. J. Chem. Eng. 16 (1999), 319–329.CrossrefGoogle Scholar

About the article

Received: 2018-04-13

Revised: 2018-05-17

Accepted: 2018-05-25

Published Online: 2018-06-14


Citation Information: Journal of Non-Equilibrium Thermodynamics, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2018-0013.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in