Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year

IMPACT FACTOR 2017: 1.633
5-year IMPACT FACTOR: 1.642

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.591
Source Normalized Impact per Paper (SNIP) 2017: 1.160

See all formats and pricing
More options …
Ahead of print


Modeling Dissociation Pressure of Semi-Clathrate Hydrate Systems Containing CO2, CH4, N2, and H2S in the Presence of Tetra-n-butyl Ammonium Bromide

Mohammad MesbahORCID iD: http://orcid.org/0000-0002-6449-392X / Ebrahim Soroush / Mashallah Rezakazemi
Published Online: 2018-09-19 | DOI: https://doi.org/10.1515/jnet-2018-0015


In this study, the phase equilibria of semi-clathrate hydrates of methane (CH4), carbon dioxide (CO2), nitrogen (N2), and hydrogen sulfide (H2S) in an aqueous solution of tetra-n-butyl ammonium bromide (TBAB) were modeled using a correlation based on a two-stage formation mechanism: a quasi-chemical reaction that forms basic semi-clathrate hydrates and adsorption of guest molecules in the linked cavities of the basic semi-clathrate hydrate. The adsorption of guest molecules was described by the Langmuir adsorption theory and the fugacity of the gas phase was calculated by Peng–Robinson (PR) equation of state (EOS). The water activity in the presence of TBAB was calculated using a correlation, dependent on temperature, the TBAB mass fraction, and the nature of the guest molecule. These equations were coupled together and form a correlation which was linked to a genetic algorithm for optimization of tuning parameters. The results showed an excellent agreement between model results and experimental data. In addition, an outlier diagnostic was performed for finding any possible doubtful data and assessing the applicability of the model. The results showed that more than 97 % of the data were reliable and they were in the applicability domain of the model.

Keywords: semi-clathrate; hydrates; sour gas; greenhouse gasses


  • [1]

    M. Mesbah, S. Shahsavari, E. Soroush, N. Rahaei and M. Rezakazemi, Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine learning, J. CO2 Utilizat. 25 (2018), 99–107.CrossrefGoogle Scholar

  • [2]

    N. Hajilary, A. Shahi and M. Rezakazemi, Evaluation of socio-economic factors on CO2 emissions in Iran: Factorial design and multivariable methods, J. Clean. Prod. 189 (2018), 108–115.CrossrefGoogle Scholar

  • [3]

    S. M. R. Razavi, M. Rezakazemi, A. B. Albadarin and S. Shirazian, Simulation of CO2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors, Chem. Eng. Process., Process Intensif. 108 (2016), 27–34.CrossrefGoogle Scholar

  • [4]

    S. Shirazian, A. Marjani and M. Rezakazemi, Separation of CO2 by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling, Eng. Comput. 28 (2011), 189–198.Google Scholar

  • [5]

    M. Rezakazemi, Z. Niazi, M. Mirfendereski, S. Shirazian, T. Mohammadi and A. Pak, CFD simulation of natural gas sweetening in a gas–liquid hollow-fiber membrane contactor, Chem. Eng. J. 168 (2011), 1217–1226.CrossrefGoogle Scholar

  • [6]

    M. Mesbah, M. Jafari, E. Soroush and S. Shahsavari, Mathematical modeling and numerical simulation of CO2 removal by using hollow fiber membrane contactors, Iran. J. Oil Gas Sci. Technol. 6 (2017), 80–96.Google Scholar

  • [7]

    M. Rezakazemi, M. Darabi, E. Soroush, and M. Mesbah, CO2 absorption enhancement by water-based nanofluids of CNT and SiO2 using hollow-fiber membrane contactor, Sep. Purif. Technol. 210 (2019), 920–926.CrossrefGoogle Scholar

  • [8]

    M. Rezakazemi, I. Heydari and Z. Zhang, Hybrid systems: Combining membrane and absorption technologies leads to more efficient acid gases (CO2 and H2S) removal from natural gas, J. CO2 Utilizat. 18 (2017), 362–369.CrossrefGoogle Scholar

  • [9]

    D. Saha, Z. Bao, F. Jia and S. Deng, Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A, Environ. Sci. Technol. 44 (2010), 1820–1826.CrossrefGoogle Scholar

  • [10]

    A. H. Mohammadi, A. Eslamimanesh, V. Belandria and D. Richon, Phase equilibria of semiclathrate hydrates of CO2, N2, CH4, or H2+ tetra-n-butylammonium bromide aqueous solution, J. Chem. Eng. Data 56 (2011), 3855–3865.CrossrefGoogle Scholar

  • [11]

    M. Fasihi, S. Shirazian, A. Marjani and M. Rezakazemi, Computational fluid dynamics simulation of transport phenomena in ceramic membranes for SO2 separation, Math. Comput. Model. 56 (2012), 278–286.CrossrefGoogle Scholar

  • [12]

    S. Shirazian, M. Rezakazemi, A. Marjani and M. S. Rafivahid, Development of a mass transfer model for simulation of sulfur dioxide removal in ceramic membrane contactors, Asia-Pac. J. Chem. Eng. 7 (2012), 828–834.CrossrefGoogle Scholar

  • [13]

    S. Shirazian, M. Pishnamazi, M. Rezakazemi, A. Nouri, M. Jafari, S. Noroozi, et al., Implementation of the finite element method for simulation of mass transfer in membrane contactors, Chem. Eng. Technol. 35 (2012), 1077–1084.Google Scholar

  • [14]

    J. Zhao, Y. Zhao and D. Shi, Experiment on methane concentration from oxygen-containing coal bed gas by THF solution hydrate formation, J. China Coal Soc. 12 (2008) 019.Google Scholar

  • [15]

    N. Azizi, M. Rezakazemi and M. M. Zarei, An intelligent approach to predict gas compressibility factor using neural network model, Neural Comput. Appl. (2017).Google Scholar

  • [16]

    Y. Kamata, Y. Yamakoshi, T. Ebinuma, H. Oyama, W. Shimada and H. Narita, Hydrogen sulfide separation using tetra-n-butyl ammonium bromide semi-clathrate (TBAB) hydrate, Energy Fuels 19 (2005), 1717–1722.CrossrefGoogle Scholar

  • [17]

    X. Ma, X. Wang and C. Song, “Molecular basket” sorbents for separation of CO2 and H2S from various gas streams, J. Am. Chem. Soc. 131 (2009), 5777–5783.CrossrefGoogle Scholar

  • [18]

    A. Joshi, P. Mekala and J. S. Sangwai, Modeling phase equilibria of semiclathrate hydrates of CH4, CO2 and N2 in aqueous solution of tetra-n-butyl ammonium bromide, J. Nat. Gas Chem. 21 (2012), 459–465.CrossrefGoogle Scholar

  • [19]

    Z. Liao, X. Guo, Y. Zhao, Y. Wang, Q. Sun, A. Liu, et al., Experimental and modeling study on phase equilibria of semiclathrate hydrates of tetra-n-butyl ammonium bromide+ CH4, CO2, N2, or gas mixtures, Ind. Eng. Chem. Res. 52 (2013), 18440–18446.CrossrefGoogle Scholar

  • [20]

    M. Rezakazemi, A. Marjani and S. Shirazian, Development of a group contribution method based on UNIFAC groups for the estimation of vapor pressures of pure hydrocarbon compounds, Chem. Eng. Technol. 36 (2013), 483–491.CrossrefGoogle Scholar

  • [21]

    A. Marjani, M. Rezakazemi and S. Shirazian, Vapor pressure prediction using group contribution method, Orient. J. Chem. 27 (2011), 1331–1335.Google Scholar

  • [22]

    M. Manteghian, S. M. M. Safavi and A. Mohammadi, The equilibrium conditions, hydrate formation and dissociation rate and storage capacity of ethylene hydrate in presence of 1, 4-dioxane, Chem. Eng. J. 217 (2013), 379–384.CrossrefGoogle Scholar

  • [23]

    N. Mayoufi, D. Dalmazzone, W. Fürst, A. Delahaye and L. Fournaison, CO2 enclathration in hydrates of peralkyl-(ammonium/phosphonium) salts: stability conditions and dissociation enthalpies, J. Chem. Eng. Data 55 (2009), 1271–1275.Google Scholar

  • [24]

    A. Mohammadi, M. Manteghian and A. H. Mohammadi, Dissociation data of semiclathrate hydrates for the systems of tetra-n-butylammonium fluoride (TBAF)+ methane+ water, TBAF+ carbon dioxide+ water, and TBAF+ nitrogen+ water, J. Chem. Eng. Data 58 (2013), 3545–3550.CrossrefGoogle Scholar

  • [25]

    T. Makino, T. Yamamoto, K. Nagata, H. Sakamoto, S. Hashimoto, T. Sugahara, et al., Thermodynamic stabilities of tetra-n-butyl ammonium chloride+ H2, N2, CH4, CO2, or C2H6 semiclathrate hydrate systems, J. Chem. Eng. Data 55 (2009), 839–841.Google Scholar

  • [26]

    S. Li, S. Fan, J. Wang, X. Lang and Y. Wang, Semiclathrate hydrate phase equilibria for CO2 in the presence of tetra-n-butyl ammonium halide (bromide, chloride, or fluoride), J. Chem. Eng. Data 55 (2010), 3212–3215.CrossrefGoogle Scholar

  • [27]

    X.-S. Li, Z.-M. Xia, Z.-Y. Chen, K.-F. Yan, G. Li and H.-J. Wu, Equilibrium hydrate formation conditions for the mixtures of CO2+ H2+ tetrabutyl ammonium bromide, J. Chem. Eng. Data 55 (2009), 2180–2184.Google Scholar

  • [28]

    A. H. Mohammadi and D. Richon, Phase equilibria of semi-clathrate hydrates of tetra-n-butylammonium bromide+ hydrogen sulfide and tetra-n-butylammonium bromide+ methane, J. Chem. Eng. Data 55 (2009), 982–984.Google Scholar

  • [29]

    M. Kwaterski and J.-M. Herri, Thermodynamic modelling of gas semi-clathrate hydrates using the electrolyte NRTL model, in: 7th International Conference on Gas Hydrates (ICGH 2011), 2011, pp. 437.

  • [30]

    M. Kwaterski and J.-M. Herri, Modelling of gas clathrate hydrate equilibria using the electrolyte non-random two-liquid (eNRTL) model, Fluid Phase Equilib. 371 (2014), 22–40.CrossrefGoogle Scholar

  • [31]

    A. Eslamimanesh, A. H. Mohammadi and D. Richon, Thermodynamic modeling of phase equilibria of semi-clathrate hydrates of CO2, CH4, or N2+ tetra-n-butylammonium bromide aqueous solution, Chem. Eng. Sci. 81 (2012), 319–328.CrossrefGoogle Scholar

  • [32]

    P. Paricaud, Modeling the dissociation conditions of salt hydrates and gas semiclathrate hydrates: application to lithium bromide, hydrogen iodide, and tetra-n-butylammonium bromide+ carbon dioxide systems, J. Phys. Chem. B 115 (2010), 288–299.Google Scholar

  • [33]

    X.-S. Li, Z.-M. Xia, Z.-Y. Chen, K.-F. Yan, G. Li and H.-J. Wu, Equilibrium hydrate formation conditions for the mixtures of CO2 + H2 + tetrabutyl ammonium bromide, J. Chem. Eng. Data 55 (2010), 2180–2184.CrossrefGoogle Scholar

  • [34]

    G.-J. Chen and T.-M. Guo, A new approach to gas hydrate modelling, Chem. Eng. J. 71 (1998), 145–151.CrossrefGoogle Scholar

  • [35]

    W. Shimada, M. Shiro, H. Kondo, S. Takeya, H. Oyama, T. Ebinuma, et al., Tetra-n-butylammonium bromide–water (1/38), Acta Crystallogr., Section C, Cryst. Struct. Commun. 61 (2005), o65–o66.Google Scholar

  • [36]

    Y. Kamata, H. Oyama, W. Shimada, T. Ebinuma, S. Takeya, T. Uchida, et al., Gas separation method using tetra-n-butyl ammonium bromide semi-clathrate hydrate, Jpn. J. Appl. Phys. 43 (2004), 362.CrossrefGoogle Scholar

  • [37]

    H. Oyama, W. Shimada, T. Ebinuma, Y. Kamata, S. Takeya, T. Uchida, et al., Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals, Fluid Phase Equilib. 234 (2005), 131–135.CrossrefGoogle Scholar

  • [38]

    W. Shimada, T. Ebinuma, H. Oyama, Y. Kamata, S. Takeya, T. Uchida, et al., Separation of gas molecule using tetra-n-butyl ammonium bromide semi-clathrate hydrate crystals, Jpn. J. Appl. Phys. 42 (2003), L129.CrossrefGoogle Scholar

  • [39]

    S. Hashimoto, T. Sugahara, M. Moritoki, H. Sato and K. Ohgaki, Thermodynamic stability of hydrogen+ tetra-n-butyl ammonium bromide mixed gas hydrate in nonstoichiometric aqueous solutions, Chem. Eng. Sci. 63 (2008), 1092–1097.CrossrefGoogle Scholar

  • [40]

    S. Mainusch, C. J. Peters, J. de Swaan Arons, J. Javanmardi and M. Moshfeghian, Experimental determination and modeling of methane hydrates in mixtures of acetone and water, J. Chem. Eng. Data 42 (1997), 948–950.CrossrefGoogle Scholar

  • [41]

    M. Rezakazemi, A. Dashti, M. Asghari and S. Shirazian, H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS, Int. J. Hydrog. Energy 42 (2017), 15211–15225.CrossrefGoogle Scholar

  • [42]

    D. B. Adams, L. T. Watson and Z. Gürdal, Optimization and blending of composite laminates using genetic algorithms with migration, Mech. Adv. Mat. Struct. 10 (2003), 183–203.CrossrefGoogle Scholar

  • [43]

    M. Arjmandi, A. Chapoy and B. Tohidi, Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi-clathrate hydrates of tetrabutyl ammonium bromide, J. Chem. Eng. Data 52 (2007), 2153–2158.CrossrefGoogle Scholar

  • [44]

    S. Lee, Y. Lee, S. Park and Y. Seo, Phase equilibria of semiclathrate hydrate for nitrogen in the presence of tetra-n-butylammonium bromide and fluoride, J. Chem. Eng. Data 55 (2010), 5883–5886.CrossrefGoogle Scholar

  • [45]

    L. F. Vega, O. Vilaseca, F. Llovell and J. S. Andreu, Modeling ionic liquids and the solubility of gases in them: recent advances and perspectives, Fluid Phase Equilib. 294 (2010), 15–30.CrossrefGoogle Scholar

  • [46]

    J. S. Sangwai and L. Oellrich, Phase equilibrium of semiclathrate hydrates of methane in aqueous solutions of tetra-n-butyl ammonium bromide (TBAB) and TBAB–NaCl, Fluid Phase Equilib. 367 (2014), 95–102.CrossrefGoogle Scholar

  • [47]

    M. Rezakazemi, S. Razavi, T. Mohammadi and A. G. Nazari, Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems, J. Membr. Sci. 379 (2011), 224–232.CrossrefGoogle Scholar

  • [48]

    A. Fukumoto, P. Paricaud, D. Dalmazzone, W. Bouchafaa and T. T.-S. Ho, W. Fürst, Modeling the dissociation conditions of carbon dioxide+ TBAB, TBAC, TBAF, and TBPB semiclathrate hydrates, J. Chem. Eng. Data 59 (2014), 3193–3204.CrossrefGoogle Scholar

  • [49]

    H. Najibi, K. Momeni, M. T. Sadeghi and A. H. Mohammadi, Experimental measurement and thermodynamic modelling of phase equilibria of semi-clathrate hydrates of (CO2+ tetra-n-butyl-ammonium bromide) aqueous solution, J. Chem. Thermodyn. 87 (2015), 122–128.CrossrefGoogle Scholar

  • [50]

    M. Mesbah, E. Soroush, V. Azari, M. Lee, A. Bahadori and S. Habibnia, Vapor liquid equilibrium prediction of carbon dioxide and hydrocarbon systems using LSSVM algorithm, J. Supercrit. Fluids 97 (2015), 256–267.CrossrefGoogle Scholar

  • [51]

    M. Mesbah, E. Soroush, A. Shokrollahi and A. Bahadori, Prediction of phase equilibrium of CO2/cyclic compound binary mixtures using a rigorous modeling approach, J. Supercrit. Fluids 90 (2014), 110–125.CrossrefGoogle Scholar

  • [52]

    E. Soroush, M. Mesbah, A. Shokrollahi, A. Bahadori and M. H. Ghazanfari, Prediction of methane uptake on different adsorbents in adsorbed natural gas technology using a rigorous model, Energy Fuels 28 (2014), 6299–6314.CrossrefGoogle Scholar

  • [53]

    E. Soroush, M. Mesbah, A. Shokrollahi, J. Rozyn, M. Lee, T. Kashiwao, et al., Evolving a robust modeling tool for prediction of natural gas hydrate formation conditions, J. Unconvent. Oil Gas Resour. 12 (2015), 45–55.CrossrefGoogle Scholar

  • [54]

    M. Mesbah, E. Soroush and M. Rezakazemi, Development of a least squares support vector machine model for prediction of natural gas hydrate formation temperature, Chin. J. Chem. Eng. 25 (2017), 1238–1248.CrossrefGoogle Scholar

About the article

Received: 2018-04-25

Revised: 2018-09-02

Accepted: 2018-09-10

Published Online: 2018-09-19

Citation Information: Journal of Non-Equilibrium Thermodynamics, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2018-0015.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in