Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year

IMPACT FACTOR 2017: 1.633
5-year IMPACT FACTOR: 1.642

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.591
Source Normalized Impact per Paper (SNIP) 2017: 1.160

See all formats and pricing
More options …
Ahead of print


Gas-Liquid Phase Recirculation in Bubble Column Reactors: Development of a Hybrid Model Based on Local CFD – Adaptive Neuro-Fuzzy Inference System (ANFIS)

Mashallah Rezakazemi
  • Faculty of Chemical and Materials Engineering, 68259 Shahrood University of Technology, Shahrood, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Saeed Shirazian
  • Corresponding author
  • Department for Management of Science and Technology Development, 469882 Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • Faculty of Applied Sciences, 469882 Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-29 | DOI: https://doi.org/10.1515/jnet-2018-0028


The Euler–Euler method and soft computing methods are recently utilized for the purpose of bubbly flow simulation and evolution of the dispersed and continuous phase in a two-phase reactor. Joining computational fluid dynamics (CFD) to the adaptive neuro-fuzzy inference system (ANFIS) method can enable the researchers to avoid several runs for heavy numerical methods (multidimensional Euler–Euler) to optimize fluid conditions. This overview can also help the researchers to carefully analyze fluid conditions and categorize their huge number of data in their artificial neural network nodes and avoid a complex non-structure CFD mesh. In addition, it can provide a neural geometry without limitation of an increasing mesh number in the fluid domain. In this study, gas and liquid circulation were considered as one of the main CFD factors in the scale-up of reactors used as an output parameter for prediction tool (ANFIS method) in different dimensions. This study shows that a combination of ANFIS and CFD methods provides the non-discrete domain in various dimensions and makes a smart tool to locally predict multiphase flow. The integration of numerical calculation and smart methods also shows that there is a great agreement between CFD results and ANFIS output depending on different dimensions.

Keywords: ANFIS; bubble column reactor; CFD; multiphase flow; numerical method; soft computing


  • [1]

    M. Pourtousi, P. Ganesan, S. C. Sandaran and J. N. Sahu, Effect of ring sparger diameters on hydrodynamics in bubble column, J. Taiwan Inst. Chem. Eng. 69 (2016), 14–24, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [2]

    M. Pourtousi, P. Ganesan and J. N. Sahu, Effect of bubble diameter size on prediction of flow pattern in Euler–Euler simulation of homogeneous bubble column regime, Meas. J. Int. Meas. Confed. 76 (2015), 255–270, DOI: .CrossrefGoogle Scholar

  • [3]

    M. Pourtousi, J. N. Sahu and P. Ganesan, Effect of interfacial forces and turbulence models on predicting flow pattern inside the bubble column, Chem. Eng. Process. Process Intensif. 75 (2014), 38–47, DOI: .CrossrefGoogle Scholar

  • [4]

    M. Y. Kariduraganavar, S. S. Kulkarni and A. A. Kittur, Pervaporation separation of water–acetic acid mixtures through poly(vinyl alcohol)-silicone based hybrid membranes, J. Membr. Sci. 246 (2005), 83–93, DOI: .CrossrefGoogle Scholar

  • [5]

    R. Krishna, J. V. Baten and M. I. Urseanu, Scale effects on the hydrodynamics of bubble column, Chem. Eng. Technol. 24 (2001), 451–458.CrossrefGoogle Scholar

  • [6]

    E. Krepper, M. Beyer, T. Frank, D. Lucas and H. M. Prasser, CFD modelling of polydispersed bubbly two-phase flow around an obstacle, Nucl. Eng. Des. 239 (2009), 2372–2381, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [7]

    G. Besagni, G. R. Guédon and F. Inzoli, Computational fluid-dynamic modeling of the mono-dispersed homogeneous flow regime in bubble columns, Nucl. Eng. Des. 331 (2018), 222–237, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [8]

    M. Pourtousi, M. Zeinali, P. Ganesan and J. N. Sahu, Prediction of multiphase flow pattern inside a 3D bubble column reactor using a combination of CFD and ANFIS, RSC Adv. 5 (2015), 85652–85672, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [9]

    A. Dashti, M. Asghari, M. Dehghani, M. Rezakazemi, A. H. Mohammadi and S. K. Bhatia, Molecular dynamics, grand canonical Monte Carlo and expert simulations and modeling of water–acetic acid pervaporation using polyvinyl alcohol/tetraethyl orthosilicates membrane, J. Mol. Liq. 265 (2018), DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [10]

    A. Dashti, H. R. Harami and M. Rezakazemi, Accurate prediction of solubility of gases within H<inf>2</inf>-selective nanocomposite membranes using committee machine intelligent system, Int. J. Hydrog. Energy 43 (2018), 6614–6624, DOI: .CrossrefGoogle Scholar

  • [11]

    M. Rezakazemi, A. Ghafarinazari, S. Shirazian and A. Khoshsima, Numerical modeling and optimization of wastewater treatment using porous polymeric membranes, Polym. Eng. Sci. 53 (2013), 1272–1278, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [12]

    M. Rezakazemi and S. Shirazian, Development of a 3D hybrid intelligent-mechanistic model for simulation of multiphase chemical reactors, Chem. Eng. Technol. 0 (2018), DOI: .CrossrefGoogle Scholar

  • [13]

    M. Rezakazemi, A. Dashti, M. Asghari and S. Shirazian, H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS, Int. J. Hydrog. Energy 42 (2017), 15211–15225, DOI: .CrossrefGoogle Scholar

  • [14]

    M. Pourtousi, CFD Modelling and Anfis Development for the Hydrodynamics Prediction of Bubble Column Reactor Ring Sparger, University of Malaya (2016).Google Scholar

  • [15]

    M. Rezakazemi, S. Razavi, T. Mohammadi and A. G. Nazari, Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA-APTEOS/TEOS nanocomposite membranes by means of expert systems, J. Membr. Sci. 379 (2011), 224–232, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [16]

    M. Ahmadlou and M. Rezakazemi, Computational fluid dynamics simulation of moving-bed nanocatalytic cracking process for the lightening of heavy crude oil, J. Porous Media 21, 2018.Web of ScienceGoogle Scholar

  • [17]

    N. Hajilary and M. Rezakazemi, CFD modeling of CO2 capture by water-based nanofluids using hollow fiber membrane contactor, Int. J. Greenh. Gas Control (2018). DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [18]

    M. Rezakazemi, CFD simulation of seawater purification using direct contact membrane desalination (DCMD) system, Desalination (2018), DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [19]

    A. Muhammad, M. Younas and M. Rezakazemi, CFD simulation of copper(II) extraction with TFA in non-dispersive hollow fiber membrane contactors, Environ. Sci. Pollut. Res. (2018), 1–11, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [20]

    M. Rezakazemi, A. Vatani and T. Mohammadi, Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles, J. Nat. Gas Sci. Eng. 30 (2016), 10–18, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [21]

    M. V. Tabib, S. A. Roy and J. B. Joshi, CFD simulation of bubble column – an analysis of interphase forces and turbulence models, Chem. Eng. J. 139 (2008), 589–614, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [22]

    M. Asadollahzadeh, N. Raoufi, M. Rezakazemi and S. Shirazian, Simulation of nonporous polymeric membranes using CFD for bioethanol purification, Macromol. Theory Simul. (2018), DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [23]

    Z. Zhang, F. Chen, M. Rezakazemi, W. Zhang, C. Lu, H. Chang, et al., Modeling of a CO2-piperazine-membrane absorption system, Chem. Eng. Res. Des. 131 (2018), 375–384, DOI: .CrossrefGoogle Scholar

  • [24]

    M. Rezakazemi, A. Marjani and S. Shirazian, Organic solvent removal by pervaporation membrane technology: experimental and simulation, Environ. Sci. Pollut. Res. (2018), DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [25]

    M. Rezakazemi, S. Shirazian and S. N. Ashrafizadeh, Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor, Desalination 285 (2012), 383–392, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [26]

    S. Shirazian, M. Rezakazemi, A. Marjani and S. Moradi, Hydrodynamics and mass transfer simulation of wastewater treatment in membrane reactors, Desalination 286 (2012), 290–295, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [27]

    M. Fasihi, S. Shirazian, A. Marjani and M. Rezakazemi, Computational fluid dynamics simulation of transport phenomena in ceramic membranes for SO2 separation, Math. Comput. Model. 56 (2012), 278–286, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [28]

    M. Rezakazemi, Z. Niazi, M. Mirfendereski, S. Shirazian, T. Mohammadi and A. Pak, CFD simulation of natural gas sweetening in a gas-liquid hollow-fiber membrane contactor, Chem. Eng. J. 168 (2011), 1217–1226, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [29]

    M. Rezakazemi, M. Shahverdi, S. Shirazian, T. Mohammadi and A. Pak, CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation, Chem. Eng. J. 168 (2011), 60–67, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [30]

    E. Farno, M. Rezakazemi, T. Mohammadi and N. Kasiri, Ternary gas permeation through synthesized pdms membranes: experimental and CFD simulation based on sorption-dependent system using neural network model, Polym. Eng. Sci. 54 (2014), 215–226, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [31]

    S. Shirazian, A. Marjani and M. Rezakazemi, Separation of CO2 by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling, Eng. Comput. 28 (2012), 189–198, DOI: .CrossrefGoogle Scholar

  • [32]

    S. Shirazian, M. Pishnamazi, M. Rezakazemi, A. Nouri, M. Jafari, S. Noroozi, et al., Implementation of the finite element method for simulation of mass transfer in membrane contactors, Chem. Eng. Technol. 35 (2012), 1077–1084, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [33]

    M. Rezakazemi, M. Iravaninia, S. Shirazian and T. Mohammadi, Transient computational fluid dynamics modeling of pervaporation separation of aromatic/aliphatic hydrocarbon mixtures using polymer composite membrane, Polym. Eng. Sci. 53 (2013), 1494–1501, DOI: .CrossrefWeb of ScienceGoogle Scholar

  • [34]

    S. M. R. Razavi, M. Rezakazemi, A. B. Albadarin and S. Shirazian, Simulation of CO2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors, Chem. Eng. Process. Process Intensif. 108 (2016), 27–34, DOI: .CrossrefGoogle Scholar

  • [35]

    M. L. de Bertodano, Turbulent Bubbly Flow in a Triangular Duct, Ph.D Thesis (1991).Google Scholar

  • [36]

    M. L. de Bertodana, Turbulent bubbly two-phase flows in a triangular (1992).

  • [37]

    M. Pourtousi, J. N. Sahu, P. Ganesan, S. Shamshirband and G. Redzwan, A combination of computational fluid dynamics (CFD) and adaptive neuro-fuzzy system (ANFIS) for prediction of the bubble column hydrodynamics, Powder Technol. 274 (2015), 466–481, DOI: .CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-06-28

Revised: 2018-08-28

Accepted: 2018-09-10

Published Online: 2018-09-29

Citation Information: Journal of Non-Equilibrium Thermodynamics, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2018-0028.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in