[1]

J. B. Angell, S. C. Terry and P. W. Barth, Silicon micromechanical devices, *Sci. Am.* 248 (1983), 44–55.Google Scholar

[2]

H. Y. Zhang, D. Pinjala, Y. K. Joshi, T. N. Wong and K. C. Toh, Development and characterization of thermal enhancement structures for single-phase liquid cooling in microelectronics systems, *Heat Transf. Eng.* 28 (2007), 997–1007.Google Scholar

[3]

B. Palm, Heat transfer in microchannels, *Microscale Thermophys. Eng.* 5 (2001), 155–175.Google Scholar

[4]

A. Bar-Cohen, State of the art and trends in the thermal packaging of the electronic equipment, *J. Electron. Packag.* 114 (1992), 257–270.Google Scholar

[5]

I. Tiselj, G. Hetsroni, B. Mavko, A. Mosyak, E. Pogrebnyak and Z. Segal, Effect of axial conduction on the heat transfer in micro-channels, *Int. J. Heat Mass Transf.* 47 (2004), 2551–2565.Google Scholar

[6]

G. Hetsroni, A. Mosyak, E. Pogerbnyak and L. P. Yarin, Heat transfer in microchannels: comparison of experiments with theory and numerical results, *Int. J. Heat Mass Transf.* 48 (2005), 5580–5601.Google Scholar

[7]

W. A. Khan, J. R. Culham, IEEE Member and M. M. Yovanovich, Optimization of microchannel heat sinks using entropy generation minimization method, *IEEE Trans. Compon. Packag. Technol.* 32 (2009), 243–251.Google Scholar

[8]

A. R. Abramson and C. -L. Tien, Recent developments in microscale thermophysical engineering, *Microscale Thermophys. Eng.* 3 (1999), 229–244.Google Scholar

[9]

G. L. Morini, Single-phase convective heat transfer in microchannels: a review of experimental results, *Int. J. Therm. Sci.* 43 (2004), 631–651.Google Scholar

[10]

C. B. Sobhan and S. V. Garimella, A comparative analysis of studies on heat transfer and fluid flow in microchannels, *Microscale Thermophys. Eng.* 5 (2001), 293–311.Google Scholar

[11]

T. M. Adams, S. I. Abdel-Khalik, S. M. Jeter and Z. H. Qureshi, An experimental investigation of single-phase forced convection in microchannels, *Int. J. Heat Mass Transf.* 41 (1998), 851–857.Google Scholar

[12]

A. Bejan, Notes on the history of the method of entropy generation minimization (finite time thermodynamics), *J. Non-Equilib. Thermodyn.* 21 (1996), 239–242.Google Scholar

[13]

L. G. Chen, C. Wu and F. R. Sun, Finite time thermodynamic optimization or entropy generation minimization of energy systems, *J. Non-Equilib. Thermodyn.* 24 (1999), 327–359.Google Scholar

[14]

A. Bejan, Second-law analysis in heat transfer and thermal design, *Adv. Heat Transf.* 15 (1982), 1–58.Google Scholar

[15]

A. Bejan and S. Lorente, Thermodynamic optimization of flow geometry in mechanical and civil engineering, *J. Non-Equilib. Thermodyn.* 26 (2001), 305–354.Google Scholar

[16]

A. Bejan, A study of entropy generation in fundamental convective heat transfer, *J. Heat Transf.* 101 (1979), 718–727.Google Scholar

[17]

S. P. Mahulikar and H. Herwig, Physical effects in laminar microconvection due to variations in incompressible fluid properties, *Phys. Fluids* 18 (2006), art. no. 073601, 12-pgs.Google Scholar

[18]

S. P. Mahilikar and H. Herwig, Theoretical investigations of scaling effects from macro-to-microscale convection due to variations in incompressible fluid properties, *Appl. Phys. Lett.* 86 (2005), art. no. 014105, 3-pgs.Google Scholar

[19]

J. Guo, L. Cheng and M. T. Xu, Multi-objective optimization of heat exchanger design by entropy generation minimization, *J. Heat Transf.* 132 (2010), art. no. 081801, 8-pgs.Google Scholar

[20]

D. H. Richardson, D. P. Sekulic and A. Campo, Low Reynolds number flow inside straight micro channels with irregular cross sections, *Heat Mass Transf.* 36 (2000), 187–193.Google Scholar

[21]

M. Saffaripour and R. Culham, Measurement of entropy generation in microscale thermal-fluid systems, *J. Heat Transf.* 132 (2010), art. no. 121401, 9-pgs.Google Scholar

[22]

S. V. Prabhu and S. P. Mahulikar, Effects of density and thermal conductivity variations on entropy generation in gas micro flows, *Int. J. Heat Mass Transf.* 79 (2014), 472–485.Google Scholar

[23]

M. M. Awad, A review of entropy generation in microchannels, *Adv. Mech. Eng.* 7 (2015), 1–32.Google Scholar

[24]

P. Rastogi and S. P. Mahulikar, Optimization of micro-heat sink based on theory of entropy generation in laminar forced convection, *Int. J. Therm. Sci.* 126 (2018), 96–104.Google Scholar

[25]

P. Rastogi and S. P. Mahulikar, Theoretical studies on energy degradation estimation and minimization in laminar convective flow towards the microscale, *Heat Transf. Asian Res.*, doi: (2018), in press.CrossrefGoogle Scholar

[26]

P. Rastogi and S. P. Mahulikar, Entropy generation in laminar forced convective water flow due to overloading toward the microscale, *J. Energy Resour. Technol.* 140 (2018), art. no. 082002, 8-pgs.Google Scholar

[27]

J. P. Holman, *Heat Transfer*, 8th SI-metric edition, Tata McGraw-Hill Publishing Co. Ltd, New Delhi, 2003, p. 650.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.