Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year

IMPACT FACTOR 2017: 1.633
5-year IMPACT FACTOR: 1.642

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.591
Source Normalized Impact per Paper (SNIP) 2017: 1.160

See all formats and pricing
More options …
Ahead of print


Geometry-Based Entropy Generation Minimization in Laminar Internal Convective Micro-Flow

Pallavi Rastogi
  • Research Scholar, Department of Aerospace Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shripad P. Mahulikar
  • Corresponding author
  • Professor, Department of Aerospace Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-11-15 | DOI: https://doi.org/10.1515/jnet-2018-0036


In this theoretical study, fully developed forced convective laminar water flow is considered in circular micro-tubes, for the constant wall heat flux boundary condition. The change in entropy generation rate (ΔS˙gen) for N micro-tubes (each of diameter DN) relative to a reference tube (of 1 mm diameter) was investigated towards the micro-scale, for different tube length (l). A given total heat flow rate is to be removed using a fixed total mass flow rate through N tubes. Hence, the wall heat flux for one of the N tubes decreases towards the micro-scale, which is “thermal under-loading”. For given l, ΔS˙gen due to fluid conduction decreases and ΔS˙gen due to fluid friction increases towards the micro-scale. There exists an optimum DN (=DN,opt) at which the change in sum-total S˙gen (ΔS˙gen,tot) is minimum; where DN,opt decreases with decreasing l. For given l, cooling capacity of the heat sink increases towards the micro-scale. A general criterion for minimization of ΔS˙gen,tot is obtained in terms of Reynolds number, Brinkman number, and dimensionless l.

Keywords: Brinkman number; entropy generation minimization; laminar micro-convective flow


  • [1]

    J. B. Angell, S. C. Terry and P. W. Barth, Silicon micromechanical devices, Sci. Am. 248 (1983), 44–55.Google Scholar

  • [2]

    H. Y. Zhang, D. Pinjala, Y. K. Joshi, T. N. Wong and K. C. Toh, Development and characterization of thermal enhancement structures for single-phase liquid cooling in microelectronics systems, Heat Transf. Eng. 28 (2007), 997–1007.Google Scholar

  • [3]

    B. Palm, Heat transfer in microchannels, Microscale Thermophys. Eng. 5 (2001), 155–175.Google Scholar

  • [4]

    A. Bar-Cohen, State of the art and trends in the thermal packaging of the electronic equipment, J. Electron. Packag. 114 (1992), 257–270.Google Scholar

  • [5]

    I. Tiselj, G. Hetsroni, B. Mavko, A. Mosyak, E. Pogrebnyak and Z. Segal, Effect of axial conduction on the heat transfer in micro-channels, Int. J. Heat Mass Transf. 47 (2004), 2551–2565.Google Scholar

  • [6]

    G. Hetsroni, A. Mosyak, E. Pogerbnyak and L. P. Yarin, Heat transfer in microchannels: comparison of experiments with theory and numerical results, Int. J. Heat Mass Transf. 48 (2005), 5580–5601.Google Scholar

  • [7]

    W. A. Khan, J. R. Culham, IEEE Member and M. M. Yovanovich, Optimization of microchannel heat sinks using entropy generation minimization method, IEEE Trans. Compon. Packag. Technol. 32 (2009), 243–251.Google Scholar

  • [8]

    A. R. Abramson and C. -L. Tien, Recent developments in microscale thermophysical engineering, Microscale Thermophys. Eng. 3 (1999), 229–244.Google Scholar

  • [9]

    G. L. Morini, Single-phase convective heat transfer in microchannels: a review of experimental results, Int. J. Therm. Sci. 43 (2004), 631–651.Google Scholar

  • [10]

    C. B. Sobhan and S. V. Garimella, A comparative analysis of studies on heat transfer and fluid flow in microchannels, Microscale Thermophys. Eng. 5 (2001), 293–311.Google Scholar

  • [11]

    T. M. Adams, S. I. Abdel-Khalik, S. M. Jeter and Z. H. Qureshi, An experimental investigation of single-phase forced convection in microchannels, Int. J. Heat Mass Transf. 41 (1998), 851–857.Google Scholar

  • [12]

    A. Bejan, Notes on the history of the method of entropy generation minimization (finite time thermodynamics), J. Non-Equilib. Thermodyn. 21 (1996), 239–242.Google Scholar

  • [13]

    L. G. Chen, C. Wu and F. R. Sun, Finite time thermodynamic optimization or entropy generation minimization of energy systems, J. Non-Equilib. Thermodyn. 24 (1999), 327–359.Google Scholar

  • [14]

    A. Bejan, Second-law analysis in heat transfer and thermal design, Adv. Heat Transf. 15 (1982), 1–58.Google Scholar

  • [15]

    A. Bejan and S. Lorente, Thermodynamic optimization of flow geometry in mechanical and civil engineering, J. Non-Equilib. Thermodyn. 26 (2001), 305–354.Google Scholar

  • [16]

    A. Bejan, A study of entropy generation in fundamental convective heat transfer, J. Heat Transf. 101 (1979), 718–727.Google Scholar

  • [17]

    S. P. Mahulikar and H. Herwig, Physical effects in laminar microconvection due to variations in incompressible fluid properties, Phys. Fluids 18 (2006), art. no. 073601, 12-pgs.Google Scholar

  • [18]

    S. P. Mahilikar and H. Herwig, Theoretical investigations of scaling effects from macro-to-microscale convection due to variations in incompressible fluid properties, Appl. Phys. Lett. 86 (2005), art. no. 014105, 3-pgs.Google Scholar

  • [19]

    J. Guo, L. Cheng and M. T. Xu, Multi-objective optimization of heat exchanger design by entropy generation minimization, J. Heat Transf. 132 (2010), art. no. 081801, 8-pgs.Google Scholar

  • [20]

    D. H. Richardson, D. P. Sekulic and A. Campo, Low Reynolds number flow inside straight micro channels with irregular cross sections, Heat Mass Transf. 36 (2000), 187–193.Google Scholar

  • [21]

    M. Saffaripour and R. Culham, Measurement of entropy generation in microscale thermal-fluid systems, J. Heat Transf. 132 (2010), art. no. 121401, 9-pgs.Google Scholar

  • [22]

    S. V. Prabhu and S. P. Mahulikar, Effects of density and thermal conductivity variations on entropy generation in gas micro flows, Int. J. Heat Mass Transf. 79 (2014), 472–485.Google Scholar

  • [23]

    M. M. Awad, A review of entropy generation in microchannels, Adv. Mech. Eng. 7 (2015), 1–32.Google Scholar

  • [24]

    P. Rastogi and S. P. Mahulikar, Optimization of micro-heat sink based on theory of entropy generation in laminar forced convection, Int. J. Therm. Sci. 126 (2018), 96–104.Google Scholar

  • [25]

    P. Rastogi and S. P. Mahulikar, Theoretical studies on energy degradation estimation and minimization in laminar convective flow towards the microscale, Heat Transf. Asian Res., doi: (2018), in press.CrossrefGoogle Scholar

  • [26]

    P. Rastogi and S. P. Mahulikar, Entropy generation in laminar forced convective water flow due to overloading toward the microscale, J. Energy Resour. Technol. 140 (2018), art. no. 082002, 8-pgs.Google Scholar

  • [27]

    J. P. Holman, Heat Transfer, 8th SI-metric edition, Tata McGraw-Hill Publishing Co. Ltd, New Delhi, 2003, p. 650.Google Scholar

About the article

Received: 2018-07-16

Revised: 2018-08-27

Accepted: 2018-09-27

Published Online: 2018-11-15

Funding Source: Ministry of Human Resource Development

Award identifier / Grant number: 154010008

Funding Source: Alexander von Humboldt-Stiftung

Award identifier / Grant number: 1104249

The authors thank the Ministry of Human Resource Development, Govt. of India, for the financial support to P. Rastogi (roll no. 154010008 at IIT-Bombay) for pursuing this research. The authors are grateful to the A. von Humboldt Foundation, Germany, for the rich exposure to research methodology through sponsorship no. 1104249 to S. P. Mahulikar.

Citation Information: Journal of Non-Equilibrium Thermodynamics, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2018-0036.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in