- 1.
The parameter ${\mathit{a}}_{4}$ in the equations given in Section 4.1 and eq. (5.15) must be replaced with ${\mathit{a}}_{4}\underset{\_}{\mathit{E}}$ as follows.

In Section 4.1: $$\begin{array}{c}\underset{\_}{\dot{\mathit{I}}}={\displaystyle \frac{1}{{\mathit{a}}_{1}}}\left({\mathit{a}}_{4}\underset{\_}{\mathit{E}}-\underset{\_}{\mathit{I}}\right)\mathrm{,}\end{array}$$ whose solution is $$\begin{array}{rl}\underset{\_}{\mathit{I}}\left(\underset{\_}{\mathit{t}}\right)& =\left(\underset{\_}{\mathit{I}}\left({\underset{\_}{\mathit{t}}}_{0}\right)-{\mathit{a}}_{4}\underset{\_}{\mathit{E}}\right)exp\left(-{\displaystyle \frac{\underset{\_}{\mathit{t}}-{\underset{\_}{\mathit{t}}}_{0}}{{\mathit{a}}_{1}}}\right)+{\mathit{a}}_{4}\underset{\_}{\mathit{E}}\mathrm{,}\end{array}$$(4.9)$$\begin{array}{rl}{\underset{\_}{\dot{\mathit{\lambda}}}}_{2}\left(\underset{\_}{\mathit{t}}\right)& ={\displaystyle \frac{-1}{{\mathit{a}}_{1}}}\left\{exp\left(-{\displaystyle \frac{\underset{\_}{\mathit{t}}-{\underset{\_}{\mathit{t}}}_{0}}{{\mathit{a}}_{1}}}\right)\left(\underset{\_}{\mathit{I}}\left({\underset{\_}{\mathit{t}}}_{0}\right)-{\mathit{a}}_{4}\underset{\_}{\mathit{E}}\right)+exp\left({\displaystyle \frac{\underset{\_}{\mathit{t}}-{\underset{\_}{\mathit{t}}}_{0}}{{\mathit{a}}_{1}}}\right)\left(\underset{\_}{\mathit{I}}\left({\underset{\_}{\mathit{t}}}_{0}\right)+{\mathit{a}}_{4}\underset{\_}{\mathit{E}}-\underset{\_}{{\mathit{\lambda}}_{2}}\left({\underset{\_}{\mathit{t}}}_{0}\right)\right)\right\}\mathrm{,}\end{array}$$(4.11)$$\begin{array}{rl}\underset{\_}{{\mathit{\lambda}}_{2}}\left(\underset{\_}{\mathit{t}}\right)& =-2\left\{{\mathit{a}}_{4}\underset{\_}{\mathit{E}}\left[cosh\left({\displaystyle \frac{\underset{\_}{\mathit{t}}-{\underset{\_}{\mathit{t}}}_{0}}{{\mathit{a}}_{1}}}\right)-1\right]+\underset{\_}{\mathit{I}}\left({\underset{\_}{\mathit{t}}}_{0}\right)sinh\left({\displaystyle \frac{\underset{\_}{\mathit{t}}-{\underset{\_}{\mathit{t}}}_{0}}{{\mathit{a}}_{1}}}\right)\right\}.\end{array}$$(4.12) Also, $$\begin{array}{c}\underset{\_}{\mathit{I}}\left({\underset{\_}{\mathit{t}}}_{1}\right)=\left(\underset{\_}{\mathit{I}}\left({\underset{\_}{\mathit{t}}}_{0}\right)-{\mathit{a}}_{4}\underset{\_}{\mathit{E}}\right)exp\left(-{\displaystyle \frac{{\underset{\_}{\mathit{t}}}_{1}-{\underset{\_}{\mathit{t}}}_{0}}{{\mathit{a}}_{1}}}\right)+{\mathit{a}}_{4}\underset{\_}{\mathit{E}}.\end{array}$$(5.15)

- 2.
The value of inductance $2.7\times {10}^{-3}\phantom{\rule{0.1667em}{0ex}}\text{H}$ in Table 1 is a mistype. The correct value is $2.7\times {10}^{-2}\phantom{\rule{0.1667em}{0ex}}\text{H}$.

## About the article

**Received**: 2018-10-10

**Accepted**: 2018-11-06

**Published Online**: 2018-12-01

**Citation Information: **Journal of Non-Equilibrium Thermodynamics, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2018-0070.

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.