Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Numerical Mathematics

Editor-in-Chief: Hoppe, Ronald H. W. / Kuznetsov, Yuri

Managing Editor: Olshanskii, Maxim

Editorial Board: Benzi, Michele / Brenner, Susanne C. / Carstensen, Carsten / Dryja, M. / Feistauer, Miloslav / Glowinski, R. / Lazarov, Raytcho / Nataf, Frédéric / Neittaanmaki, P. / Bonito, Andrea / Quarteroni, Alfio / Guzman, Johnny / Rannacher, Rolf / Repin, Sergey I. / Shi, Zhong-ci / Tyrtyshnikov, Eugene E. / Zou, Jun / Simoncini, Valeria / Reusken, Arnold

4 Issues per year


IMPACT FACTOR 2017: 0.951
5-year IMPACT FACTOR: 3.128

CiteScore 2017: 0.96

SCImago Journal Rank (SJR) 2017: 0.494
Source Normalized Impact per Paper (SNIP) 2017: 0.772

Mathematical Citation Quotient (MCQ) 2017: 1.68

Online
ISSN
1569-3953
See all formats and pricing
More options …
Volume 23, Issue 1

Issues

Multigrid methods for Hdiv-conforming discontinuous Galerkin methods for the Stokes equations

Guido Kanschat
  • Corresponding author
  • Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Universität Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Youli Mao
Published Online: 2015-08-07 | DOI: https://doi.org/10.1515/jnma-2015-0005

Abstract

A multigrid method for the Stokes system discretized with an Hdiv-conforming discontinuous Galerkin method is presented. It acts on the combined velocity and pressure spaces and thus does not need a Schur complement approximation. The smoothers used are of overlapping Schwarz type and employ a local Helmholtz decomposition. Additionally, we use the fact that the discretization provides nested divergence free subspaces. We present the convergence analysis and numerical evidence that convergence rates are not only independent of mesh size, but also reasonably small.

Keywords: Multigrid; mixed finite element methods; Stokes equations

About the article

Received: 2013-10-13

Accepted: 2014-01-14

Published Online: 2015-08-07

Published in Print: 2015-03-01


Citation Information: Journal of Numerical Mathematics, Volume 23, Issue 1, Pages 51–66, ISSN (Online) 1569-3953, ISSN (Print) 1570-2820, DOI: https://doi.org/10.1515/jnma-2015-0005.

Export Citation

© 2015 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Philip L. Lederer, Christoph Lehrenfeld, and Joachim Schöberl
SIAM Journal on Numerical Analysis, 2018, Volume 56, Number 4, Page 2070
[2]
Christopher Coley, Joseph Benzaken, and John A. Evans
Numerical Linear Algebra with Applications, 2018, Page e2145
[3]
D. E. Charrier, D. A. May, and S. M. Schnepp
SIAM Journal on Scientific Computing, 2017, Volume 39, Number 6, Page B1021
[4]
Lawrence Mitchell and Eike Hermann Müller
Journal of Computational Physics, 2016, Volume 327, Page 1
[5]
David Kamensky, Ming-Chen Hsu, Yue Yu, John A. Evans, Michael S. Sacks, and Thomas J.R. Hughes
Computer Methods in Applied Mechanics and Engineering, 2017, Volume 314, Page 408
[6]
Guido Kanschat, Raytcho Lazarov, and Youli Mao
Journal of Computational and Applied Mathematics, 2017, Volume 310, Page 174

Comments (0)

Please log in or register to comment.
Log in