Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Numerical Mathematics

Editor-in-Chief: Hoppe, Ronald H. W. / Kuznetsov, Yuri

Managing Editor: Olshanskii, Maxim

Editorial Board: Benzi, Michele / Brenner, Susanne C. / Carstensen, Carsten / Dryja, M. / Feistauer, Miloslav / Glowinski, R. / Lazarov, Raytcho / Nataf, Frédéric / Neittaanmaki, P. / Bonito, Andrea / Quarteroni, Alfio / Guzman, Johnny / Rannacher, Rolf / Repin, Sergey I. / Shi, Zhong-ci / Tyrtyshnikov, Eugene E. / Zou, Jun / Simoncini, Valeria / Reusken, Arnold


IMPACT FACTOR 2018: 3.107

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 1.252
Source Normalized Impact per Paper (SNIP) 2018: 1.618

Mathematical Citation Quotient (MCQ) 2018: 1.13

Online
ISSN
1569-3953
See all formats and pricing
More options …
Volume 24, Issue 3

Issues

Duality-based adaptivity in finite element discretization of heterogeneous multiscale problems

Matthias Maier
  • Institute of Applied Mathematics, Heidelberg University, Im Neuenheimer Feld 293/294, D-69120 Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rolf Rannacher
  • Corresponding author
  • Institute of Applied Mathematics, Heidelberg University, Im Neuenheimer Feld 293/294, D-69120 Heidelberg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-06 | DOI: https://doi.org/10.1515/jnma-2014-0074

Abstract

This paper introduces an framework for adaptivity for a class of heterogeneous multiscale finite element methods for elliptic problems, which is suitable for a posteriori error estimation with separated quantification of the model error as well as the macroscopic and microscopic discretization errors. The method is derived within a general framework for ‘goal-oriented’ adaptivity, the so-called Dual Weighted Residual (DWR) method. This allows for a systematic a posteriori balancing of multiscale modeling and discretization. The developed method is tested numerically at elliptic diffusion problems for different types of heterogeneous oscillatory coefficients.

Keywords: heterogeneous multiscale method; finite element method; mesh adaptation; model adaptation; goal-oriented adaptivity; DWR method

MSC 2010: 35J15; 35J15; 65N12; 65N15; 65N30; 65N50

References

  • [1]

    A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM, SIAM J. Multiscale Modeling Simul., 4 (2005), No. 2, 447-459.Google Scholar

  • [2]

    A. Abdulle, A priori and a posteriori error analysis for numerical homogenization: a unified framework, In: Multiscale Problems, Series in Contemporary Applied Mathematics, 16 (2011), 280-305.Google Scholar

  • [3]

    A. Abdulle and A. Nonnenmacher, A posteriori error estimate in quantities of interest for the finite element heterogeneous multiscale method, Numer. Meth. PDE, 29 (2013), No. 5, 1629-1656.Google Scholar

  • [4]

    A. Abdulle and G. Vilmart, Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems, Math. Comp., 83 (2014), 513-536.Google Scholar

  • [5]

    R.A. Adams, SobolevSpaces, PureAppl. Math., Vol. 140, 2003.Google Scholar

  • [6]

    G.Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), No. 6, 1482-1518.Google Scholar

  • [7]

    T. Arbogast and K.J. Boyd, Subgrid upscaling and mixed multiscale finite elements, J. Numer. Anal., 44 (2006), No. 3, 1150-1171.Google Scholar

  • [8]

    I. Babuska, Homogenization and its application. Mathematical and computational problems. Numerical solution of Partial Differential Equations III, Proc. Third Sympos., Univ. Maryland, 1975, Academic Press, New York, 1976, pp. 363-379.Google Scholar

  • [9]

    W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B.Turcksin, and T. D.Young, Thedeal.II Library, version 8.1. arXivpreprint, http://arxiv.org/abs/1312.2266v4, 2013.Google Scholar

  • [10]

    W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equations, Birkhauser, 2003.Google Scholar

  • [11]

    R. Becker and M. Braack, Multigrid techniques for finite elements on locally refined meshes, Numer. Linear Algebra Appl., 7 (2000), 363-379.Google Scholar

  • [12]

    R. Becker and R. Rannacher, Afeed-back approach to error control in finite element methods: Basic analysis and examples. East-West J. Numer. Math., 4 (1996), 237-264.Google Scholar

  • [13]

    R. Becker and R. Rannacher, Weighted a posteriori error control in fe methods. In: Proc. ofENUMATH-97, 1998. Lecture at ENUMATH-95, Paris, September 18-22, 1995, pp. 621-637.Google Scholar

  • [14]

    R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numerica, 10 (2001), 1-102.Google Scholar

  • [15]

    A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. Studies in Mathematics and Its Applications, No. 5, North-Holland, 1978.Google Scholar

  • [16]

    M. Braack and A. Ern, A posteriori control of modeling errors and discretization errors, Multiscale Modeling Simul., 1 (2003), No. 2, 221-238.Google Scholar

  • [17]

    M. Braack and T. Richter, Solutions of 3D Navier-Stokes benchmark problems with adaptive finite element, Computers and Fluids, 35 (2006), 37-392.Google Scholar

  • [18]

    S. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer, Berlin-Heidelberg-New York, 1994.Google Scholar

  • [19]

    F. Brezzi, Interacting with the subgrid world, Numer. Anal., 1999, pp. 69-82.Google Scholar

  • [20]

    W. T. Cardwell Jr. and R. L. Parsons, Average permeability of heterogeneous oil sands, Trans. oftheAIME, 160 (1945), No. 1, 34-42.Google Scholar

  • [21]

    G. F.Carey and J. T.Oden, Finite Elements, Computational Aspects. Vol. III. Prentice-Hall, 1984.Google Scholar

  • [22]

    Z. Chen and T. Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comp., 72 (2003), 541-576.Google Scholar

  • [23]

    P. G. Ciarlet, The Finite Element Method for Elliptic Problems. Classics Appl. Math. Vol. 40, SIAM, Philadelphia, 2002Google Scholar

  • [24]

    D. Cioranescu and P. Donato, An Introduction to Homogenization. Oxford Lecture Series in Mathematics and Its Applications, Vol. 17. Oxford University Press, 1999.Google Scholar

  • [25]

    Ph. Clement, Approximation by finite element functions using local regularization, RAIRO Analyse Numerique 9 (1975), 77-84.Google Scholar

  • [26]

    W. E and B. Engquist, The heterogeneous multiscale methods, Comm. Math. Sci., 1 (2003), No. 1, 87-132.Google Scholar

  • [27]

    W. E and B. Engquist, Multiscale modeling and computation, Notices Amer. Math. Soc., 50 (2003), No. 9, 1062-1070.Google Scholar

  • [28]

    W. E, P. Ming, and P.Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Amer. Math. Soc., 18 (2005), 121-156.Google Scholar

  • [29]

    Y. Efendiev, V. Ginting, and T. Y. Hou, Multiscale finite element methods for nonlinear problems and their applications, Comm. Math. Sci., 2 (2004), No. 4, 553-589.Google Scholar

  • [30]

    M. G. D. Geers, V. G. Kouznetsova, and W. A. M. Brekelmans, Multi-scale computational homogenization: Trends and challenges. J. Comp. Appl. Math., 234 (2010), No. 7, 2175-2182.Google Scholar

  • [31]

    P. Henning and M. Ohlberger, A note on homogenization of advection-diffusion problems with large expected drift, Z. Anal. Anwend., 30 (2011), No. 3, 319-339.Google Scholar

  • [32]

    P. Henning, M. Ohlberger, and B. Schweizer, An adaptive multiscale finite element method, Technical Report 05/12-N, FB 10, Universität Münster, 2012.Google Scholar

  • [33]

    R.Hill, On constitutive macro-variables for heterogeneous solids at finite strain, Proc. Royal Soc., A326 (1972), 131-147.Google Scholar

  • [34]

    T. Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comp. Phys., 134 (1997), 169-189.Google Scholar

  • [35]

    T. J. R. Hughes, G. R. Feijeo, L. Mazzei, and J.-B. Quincy, The variational multiscale method — a paradigm for computational mechanics, Comp. Meth.Appl. Mech. Engrg, 166 (1998), No. 1-2, 3-24.Google Scholar

  • [36]

    D. Li, B. Beckner, and A. Kumar, SPE 56554 — a new efficient averaging technique for scaleup of multimillion-cell geologic models, SPE Papers, pp. 495-510, 1999.Google Scholar

  • [37]

    A.-M. Matache and C. Schwab, Generalized FEM for homogenization problems, Multiscale and Multiresolution Methods, 20 (2002), 197-237.Google Scholar

  • [38]

    A.-M. Matache and C. Schwab, Two-scale FEM for homogenization problems, Math. Modelling Numer. Anal., 36 (2002), No. 4, 536-572.Google Scholar

  • [39]

    J. T. Oden and K. S. Vemaganti, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. Part I: Error estimates and adaptive algorithms. J. Comp. Phys., 164 (2000), 22-47.Google Scholar

  • [40]

    J. T. Oden and K. S. Vemaganti, Adaptive modeling of composite structures: Modeling error estimation. Int. J. Civil Struct. Engrg, 1 (2000), 1-16.Google Scholar

  • [41]

    J. T. Oden and K. S. Vemaganti, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. Part II: A computational environment for adaptive modeling of heterogeneous elastic solids. Comp. Meth. Appl. Mech. Engrg, 190 (2001), No. 46-47, 6089-6124.Google Scholar

  • [42]

    J. T. Oden, S. Prudhomme, A. Romkes, and P. T. Bauman, Multiscale modeling of physical phenomena: Adaptive control of models. SIAM J. Sci. Comp., 28 (2006), No. 6, 2359-2389.Google Scholar

  • [43]

    M. Ohlberger, A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems, Multiscale Modeling and Simulation, 4 (2005), No. 1, 88-114.Google Scholar

  • [44]

    T. Richter and T. Wick, Variational localizations of the dual weighted residual estimator, J. Comp. Appl. Math., 271 (2014), 69-85.Google Scholar

  • [45]

    A. Romkes and T. C. Moody, Local goal-oriented estimation of modeling error for multi-scale modeling of heterogeneous elastic materials, Int. J. Comp. Meth. Engrg. Sci. Mech., 4, (2007).Google Scholar

  • [46]

    L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 54 (1990), 483-493.Google Scholar

  • [47]

    R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, John Wiley, Teubner, 1996.Google Scholar

  • [48]

    H.-J. Vogel, QuantIm, C/C++ library for scientific image processing, version 4.01. http://www.ufz.de/index.php?en=16562, 2008.

  • [49]

    J. E. Warren and H. S. Price, Flow in heterogeneous porous media, Soc. Petrol. Engineers J., 1 (1961), No. 3, 153-169.Google Scholar

About the article

Received: 2014-10-28

Revised: 2015-04-15

Accepted: 2015-07-02

Published Online: 2016-10-06

Published in Print: 2016-10-01


Citation Information: Journal of Numerical Mathematics, Volume 24, Issue 3, Pages 167–187, ISSN (Online) 1569-3953, ISSN (Print) 1570-2820, DOI: https://doi.org/10.1515/jnma-2014-0074.

Export Citation

© 2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Laura Scarabosio, Barbara Wohlmuth, J. Tinsley Oden, and Danial Faghihi
Computers & Mathematics with Applications, 2019, Volume 78, Number 8, Page 2700
[2]
J. Tinsley Oden
Acta Numerica, 2018, Volume 27, Page 353

Comments (0)

Please log in or register to comment.
Log in