Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Numerical Mathematics

Editor-in-Chief: Hoppe, Ronald H. W. / Kuznetsov, Yuri

Managing Editor: Olshanskii, Maxim

Editorial Board: Benzi, Michele / Brenner, Susanne C. / Carstensen, Carsten / Dryja, M. / Feistauer, Miloslav / Glowinski, R. / Lazarov, Raytcho / Nataf, Frédéric / Neittaanmaki, P. / Bonito, Andrea / Quarteroni, Alfio / Guzman, Johnny / Rannacher, Rolf / Repin, Sergey I. / Shi, Zhong-ci / Tyrtyshnikov, Eugene E. / Zou, Jun / Simoncini, Valeria / Reusken, Arnold


IMPACT FACTOR 2018: 3.107

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 1.252
Source Normalized Impact per Paper (SNIP) 2018: 1.618

Mathematical Citation Quotient (MCQ) 2018: 1.13

Online
ISSN
1569-3953
See all formats and pricing
More options …
Volume 25, Issue 4

Issues

Pressure-robust analysis of divergence-free and conforming FEM for evolutionary incompressible Navier–Stokes flows

Philipp W. Schroeder
  • Corresponding author
  • Institute for Numerical and Applied Mathematics, Georg-August-University Göttingen, D-37083 Göttingen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gert Lube
Published Online: 2018-02-22 | DOI: https://doi.org/10.1515/jnma-2016-1101

Abstract

This article focusses on the analysis of a conforming finite element method for the time-dependent incompressible Navier–Stokes equations. For divergence-free approximations, in a semi-discrete formulation, we prove error estimates for the velocity that hold independently of both pressure and Reynolds number. Here, a key aspect is the use of the discrete Stokes projection for the error splitting. Optionally, edge-stabilisation can be included in the case of dominant convection. Emphasising the importance of conservation properties, the theoretical results are complemented with numerical simulations of vortex dynamics and laminar boundary layer flows.

Keywords: Incompressible viscous flow; divergence-free FEM; pressure/semi-robust error estimates; vortex dynamics

MSC 2010: 65M12; 65M15; 65M60; 76D05; 76D10; 76D17

References

  • [1]

    D. Arndt, H. Dallmann and G. Lube, Local projection FEM stabilization for the time-dependent incompressible Navier– Stokes problem, Numer. Meth. Partial Differ. Equ. 31 (2015), 1224–1250.Web of ScienceCrossrefGoogle Scholar

  • [2]

    A. L. Bertozzi, Heteroclinic Orbits and Chaotic Dynamics in Planar Fluid Flows, SIAM J. Numer. Anal. 19 (1988), 1271–1294.CrossrefGoogle Scholar

  • [3]

    F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models, Springer Science & Business Media, New York, 2013.Google Scholar

  • [4]

    A. Buffa, C. de Falco and G. Sangalli, IsoGeometric Analysis: Stable elements for the 2D Stokes equation, Int.J. Numer. Methods Fluids 65 (2011), 1407–1422.Web of ScienceCrossrefGoogle Scholar

  • [5]

    E. Burman, Robust error estimates for stabilized finite element approximations of the two dimensional Navier–Stokes equations at high Reynolds number, Comput. Methods Appl. Mech. Engrg. 288 (2015), 2–23.CrossrefGoogle Scholar

  • [6]

    E. Burman and M. A. Fernández, Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence, Numer. Math. 107 (2007), 39–77.CrossrefWeb of ScienceGoogle Scholar

  • [7]

    E. Burman, M. A. Fernández and P. Hansbo, Continuous Interior Penalty Finite Element Method for Oseen’s Equations, SIAM J. Numer. Anal. 44 (2006), 1248–1274.CrossrefGoogle Scholar

  • [8]

    E. Burman and A. Linke, Stabilized finite element schemes for incompressible flow using Scott–Vogelius elements, Appl. Numer. Math. 58 (2008), 1704–1719.CrossrefWeb of ScienceGoogle Scholar

  • [9]

    S. Charnyi, T. Heister, M. A. Olshanskii and L. G. Rebholz, On conservation laws of Navier–Stokes Galerkin discretizations, Preprint #51, Department of Mathematics, University of Houston, 2016.Google Scholar

  • [10]

    R. Codina, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Comput. Methods Appl. Mech. Engrg. 191 (2002), 4295–4321.CrossrefGoogle Scholar

  • [11]

    H. Dallmann, D. Arndt and G. Lube, Local projection stabilization for the Oseen problem, IMA J. Numer. Anal. 36 (2016), 796–823.Web of ScienceCrossrefGoogle Scholar

  • [12]

    J. de Frutos, B. García-Archilla, V. John and J. Novo, Grad-div Stabilization for the Evolutionary Oseen Problem with Inf-sup Stable Finite Elements, J. Sci. Comput. 66 (2016), 991–1024.Web of ScienceCrossrefGoogle Scholar

  • [13]

    F. Durst, Fluid Mechanics: An Introduction to the Theory of Fluid Flows, Springer-Verlag, Berlin, 2008.Google Scholar

  • [14]

    A. Ern andJ.-L. Guermond, Theory and Practice of Finite Elements, Springer, New York, 2004.Google Scholar

  • [15]

    J. A. Evans and T. J. R. Hughes, IsoGeometric divergence-conforming B-splines for the steady Navier–Stokes equations, Math. Models Methods Appl. Sci. 23 (2013), 1421–1478.CrossrefWeb of ScienceGoogle Scholar

  • [16]

    V. Girault, R. H. Nochetto and L. R. Scott, Maximum-norm stability of the finite element Stokes projection, J. Math. Pures Appl. 84 (2005), 279–330.CrossrefGoogle Scholar

  • [17]

    V. Girault, R. H. Nochetto and L. R. Scott, Max-norm estimates for Stokes and Navier–Stokes approximations in convex polyhedra, Numer. Math. 131 (2015), 771–822.CrossrefWeb of ScienceGoogle Scholar

  • [18]

    V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, Springer, Berlin, 1986.Google Scholar

  • [19]

    V. Girault and L. R. Scott, A quasi-local interpolation operator preserving the discrete divergence, Calcolo 40 (2003), 1–19.CrossrefGoogle Scholar

  • [20]

    P. M. Gresho and S. T. Chan, On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 2: Implementation, Int. J. Numer. Methods Fluids 11 (1990), 621–659.CrossrefGoogle Scholar

  • [21]

    P. M. Gresho and R. L. Sani, Incompressible Flow and the Finite Element Method, Volume 2: Isothermal Laminar Flow, John Wiley & Sons, 2000.Google Scholar

  • [22]

    M. D. Gunzburger, Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms, Academic Press, Inc., Boston, 1989.Google Scholar

  • [23]

    J. Guzmán, D. Leykekhman, J. Rossmann and A. H. Schatz, Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods, Numer.Math. 112 (2009), 221–243.CrossrefGoogle Scholar

  • [24]

    J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements in three dimensions, IMA J. Numer. Anal. 34 (2014), 1489–1508.CrossrefWeb of ScienceGoogle Scholar

  • [25]

    J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements on general triangular meshes, Math. Comp. 83 (2014), 15–36.Google Scholar

  • [26]

    G. Haller, An objective definition of a vortex, J. Fluid Mech. 525 (2005), 1–26.CrossrefGoogle Scholar

  • [27]

    Y. Huang and S. Zhang, A lowest order divergence-free finite element on rectangular grids, Front. Math. China 6 (2011), 253–270.CrossrefWeb of ScienceGoogle Scholar

  • [28]

    J. C. R. Hunt, A. A. Wray and P. Moin, Eddies, streams, and convergence zones in turbulent flows, Center for Turbulence Research Report CTR-S88 (1988).Google Scholar

  • [29]

    R. Ingram, Unconditional convergence of high-order extrapolations of the Crank–Nicolson, finite element method for the Navier–Stokes equations, Int. J. Numer. Anal. Modeling 10 (2013), 257–297.Google Scholar

  • [30]

    J. Jeong and F. Hussain, On the identification of a vortex, J. Fluid Mech. 285 (1995), 69–94.CrossrefGoogle Scholar

  • [31]

    V. John, A. Linke, C. Merdon, M. Neilan and L. G. Rebholz, On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Review, accepted, 2016.Google Scholar

  • [32]

    W. Layton, Introduction to the Numerical Analysis of Incompressible Viscous Flows, SIAM, Philadelphia, 2008.Google Scholar

  • [33]

    P. Lederer, A. Linke, C. Merdon and J. Schöberl, Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements, SIAM J. Numer. Anal., accepted, 2016.Web of ScienceGoogle Scholar

  • [34]

    A. Linke, G. Matthies and L. Tobiska, Robust Arbitrary Order Mixed Finite Element Methods for the Incompressible Stokes Equations with pressure independent velocity errors, ESAIM: M2AN 50 (2016), 289–309.CrossrefGoogle Scholar

  • [35]

    A. Linke and C. Merdon, Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg. 311 (2016), 304–326.CrossrefGoogle Scholar

  • [36]

    R. Liska and B. Wendroff, Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations, SIAM J. Sci. Comp. 25 (2003), 995–1017.CrossrefGoogle Scholar

  • [37]

    A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002.Google Scholar

  • [38]

    G. Matthies and L. Tobiska, Local projection type stabilization applied to inf-sup stable discretizations of the Oseen problem, IMA J. Numer. Anal. 35 (2015), 239–269.CrossrefWeb of ScienceGoogle Scholar

  • [39]

    J. Qin, On the convergence of some low order mixed finite elements for incompressible fluids, Ph.D. thesis, Pennsylvania State University, 1994.Google Scholar

  • [40]

    H. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations: ConvectionDiffusionReaction and Flow Problems, Springer-Verlag, Berlin, 2008.Google Scholar

  • [41]

    H. Schlichting and K. Gersten, Boundary-Layer Theory, Springer-Verlag, Berlin, 2000.Google Scholar

  • [42]

    L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, ESAIM: M2AN 19 (1985), 111–143.CrossrefGoogle Scholar

  • [43]

    D. J. Tritton, Physical Fluid Dynamics, Oxford University Press, New York, 1988.Google Scholar

  • [44]

    S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comp. 74 (2005), 543–554.Google Scholar

  • [45]

    S. Zhang, A family of Qk+1,k × Qk,k+1 divergence-free finite elements on rectangular grids, SIAM J. Numer. Anal. 47 (2009), 2090–2107.Web of ScienceCrossrefGoogle Scholar

  • [46]

    S. Zhang, Divergence-free finite elements on tetrahedral grids for k ⩾ 6, Math. Comp. 80 (2011), 669–695.CrossrefGoogle Scholar

About the article

Received: 2016-10-12

Revised: 2017-01-26

Accepted: 2017-01-29

Published Online: 2018-02-22

Published in Print: 2017-12-20


Citation Information: Journal of Numerical Mathematics, Volume 25, Issue 4, Pages 249–276, ISSN (Online) 1569-3953, ISSN (Print) 1570-2820, DOI: https://doi.org/10.1515/jnma-2016-1101.

Export Citation

© 2017 Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Alexander Linke and Leo G. Rebholz
Journal of Computational Physics, 2019, Volume 388, Page 350
[2]
Sergey Charnyi, Timo Heister, Maxim A. Olshanskii, and Leo G. Rebholz
Applied Numerical Mathematics, 2018
[5]
[7]
Javier de Frutos, Bosco García-Archilla, Volker John, and Julia Novo
Advances in Computational Mathematics, 2017

Comments (0)

Please log in or register to comment.
Log in