Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Numerical Mathematics

Editor-in-Chief: Hoppe, Ronald H. W. / Kuznetsov, Yuri

Managing Editor: Olshanskii, Maxim

Editorial Board: Benzi, Michele / Brenner, Susanne C. / Carstensen, Carsten / Dryja, M. / Feistauer, Miloslav / Glowinski, R. / Lazarov, Raytcho / Nataf, Frédéric / Neittaanmaki, P. / Bonito, Andrea / Quarteroni, Alfio / Guzman, Johnny / Rannacher, Rolf / Repin, Sergey I. / Shi, Zhong-ci / Tyrtyshnikov, Eugene E. / Zou, Jun / Simoncini, Valeria / Reusken, Arnold


IMPACT FACTOR 2017: 0.951
5-year IMPACT FACTOR: 3.128

CiteScore 2017: 0.96

SCImago Journal Rank (SJR) 2017: 0.494
Source Normalized Impact per Paper (SNIP) 2017: 0.772

Mathematical Citation Quotient (MCQ) 2017: 1.68

Online
ISSN
1569-3953
See all formats and pricing
More options …
Volume 26, Issue 4

Issues

The deal.II library, Version 9.0

Giovanni Alzetta / Daniel Arndt
  • Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wolfgang Bangerth / Vishal Boddu
  • Chair of Applied Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 5, 91058, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benjamin Brands
  • Chair of Applied Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 5, 91058, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Denis Davydov
  • Chair of Applied Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 5, 91058, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rene Gassmöller
  • Department of Earth and Planetary Sciences, University of California Davis, One Shields Avenue, CA-95616 Davis, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Timo Heister / Luca Heltai / Katharina Kormann / Martin Kronbichler
  • Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matthias Maier
  • School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church Street SE, Minneapolis, MN 55455, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jean-Paul Pelteret / Bruno Turcksin
  • Computational Engineering and Energy Sciences Group, Computional Sciences and Engineering Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd., TN 37831, Minneapolis, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David Wells
Published Online: 2018-12-14 | DOI: https://doi.org/10.1515/jnma-2018-0054

Abstract

This paper provides an overview of the new features of the finite element library deal.II version 9.0.

Keywords: software; finite elements; deal.II

Classification: 65M60; 65N30; 65Y05

References

  • [1]

    P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. ĽExcellent, A Fully asynchronous multlfrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl. 23 (2001), No. 1, 15–41.CrossrefGoogle Scholar

  • [2]

    P. R. Amestoy, A. Guermouche, J.-Y. ĽExcellent, and S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Computing 32 (2006), No. 2, 136–156.CrossrefGoogle Scholar

  • [3]

    P.R. Amestoy, I.S. Duff, and J.-Y. ĽExcellent, Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. Methods Appl. Mech. Engrg. 184 (2000), 501–520.CrossrefGoogle Scholar

  • [4]

    E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, third ed, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.Google Scholar

  • [5]

    D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells, The deal.II library, Version 8.5, J. Numer. Math. 25 (2017), No. 3, 137–146.Google Scholar

  • [6]

    S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. May, L. Curfman Mclnnes, R. Mills, T. Munson, K. Rupp, P. Sanan B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, Argonne National Laboratory, Report No. ANL-95/11 - Revision 3.9, 2018.Google Scholar

  • [7]

    S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. May, L. Curfman Mclnnes, R. Mills, T. Munson, K. Rupp, P. Sanan B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Web Page, http://www.mcs.anl.gov/petsc, 2018.

  • [8]

    W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, Algorithms and data structures for massively parallel generic adaptive finite element codes, ACM Trans. Math. Softw. 38 (2011), 14/1-28.CrossrefGoogle Scholar

  • [9]

    W. Bangerth, D. Davydov, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and D. Wells, The deal.II library, Version 8.4, J. Numer. Math. 24 (2016), No. 3, 135–141.Google Scholar

  • [10]

    W. Bangerth, R. Hartmann, and G. Kanschat, deal.II — a general purpose object oriented finite element library, ACM Trans. Math. Softw. 33 (2007), No. 4.Google Scholar

  • [11]

    W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, and B.Turcksin, The deal.II library, Version 8.3, Archive Numer. Software 4 (2016), No. 100, 1–11.Google Scholar

  • [12]

    W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B.Turcksin, and T. D.Young, The deal.II library, Version 8.0, arXivPreprinthttp://arxiv.org/abs/1312.2266v3 (2013).Google Scholar

  • [13]

    W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B.Turcksin, and T. D.Young, The deal.II library, Version 8.1, arXiv Preprint http://arxiv.org/abs/1312.2266v4 (2013).Google Scholar

  • [14]

    W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B.Turcksin, and T. D.Young, The deal.II library, Version 8.2, Archive Numer. Software 3 (2015).Google Scholar

  • [15]

    W. Bangerth and G. Kanschat, Concepts for Object-Oriented Finite Element Software – the Deal.II Library, SFB 359, Preprint No. 1999-43, Heidelberg, 1999.Google Scholar

  • [16]

    W. Bangerth and O. Kayser-Herold, Data structures and requirements for hp finite element software, ACM Trans. Math. Softw. 36 (2009), No. 1, 4/1–4/31.Google Scholar

  • [17]

    R. A. Bartlett, D. M. Gay, and E. T. Phipps, Automatic Differentiation of C++ Codes for Large-Scale Scientific Computing, Int. Conf. on Computational Science – ICCS 2006 (Eds. V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra), Springer, Berlin–Heidelberg, 2006, pp. 525–532.Google Scholar

  • [18]

    L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK User’s Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.Google Scholar

  • [19]

    J. L. Blanco and P. K. Rai, Nanoflann: AC++ Header-Only Fork of FLANN, a Library for Nearest Neighbor (NN) with KD-Trees, https://github.com/jlblancoc/nanoflann, 2014.

  • [20]

    C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput. 33 (2011), No. 3, 1103–1133.CrossrefGoogle Scholar

  • [21]

    Coverity Scan (SYNOPSYS, INC.), https://scan.coverity.com.

  • [22]

    CuSOLVER Library, https://docs.nvidia.com/cuda/cusolver/index.html.

  • [23]

    CuSPARSE Library, https://docs.nvidia.com/cuda/cusparse/index.html.

  • [24]

    T. A. Davis, Algorithm 832: UMFPACK V.4.3 — an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw. 30 (2004), 196–199.CrossrefGoogle Scholar

  • [25]

    D. Davydov, T. Gerasimov, J.-P. Pelteret, and P. Steinmann, Convergence study of the h-adaptive PUM and the hp-adaptive FEM applied to eigenvalue problems in quantum mechanics, Adv. Modeling Simul. Engrg. Sci. 4 (2017), No.1, 7.CrossrefGoogle Scholar

  • [26]

    A. DeSimone, L. Heltai, and C. Manigrasso, Tools for the Solution of PDEs Defined on Curved Manifolds with Deal.II, SISSA, Report No. 42/2009/M, 2009.Google Scholar

  • [27]

    M. Galassi, J. Davies, J. Theiler, B. Gough, G.Jungman, P. Alken, M. Booth, F. Rossi, and R. Ulerich, GNU Scientific Library Reference Manual, Edition 2.3, 2016.Google Scholar

  • [28]

    R. Gassmöller, E. Heien, E. G. Puckett, and W. Bangerth, Flexible and Scalable Particle-In-Cell Methods for Massively Parallel Computations, arXiv:1612.03369, Report, 2016.Google Scholar

  • [29]

    R. Gassmöller, H. Lokavarapu, E. Heien, E. G. Puckett, and W. Bangerth, Flexible and scalable particle-in-cell methods with adaptive mesh refinement for geodynamic computations, submitted (2018).Google Scholar

  • [30]

    C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Methods Engrg. 79 (2009), No. 11, 1309–1331.CrossrefGoogle Scholar

  • [31]

    N. Giuliani, A. Mola, and L. Heltai, π-BEM: A flexible parallel implementation for adaptive, geometry aware, and high order boundary element methods, Adv. Engrg. Software 121 (2018), No. March, 39–58.CrossrefGoogle Scholar

  • [32]

    A. Griewank, D. Juedes, and J. Utke, Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++, ACM Trans. Math. Software (TOMS) 22 (1996), No. 2, 131–167.CrossrefGoogle Scholar

  • [33]

    T. Heister, J. Dannberg, R. Gassmöller, and W. Bangerth, High accuracy mantle convection simulation through modern numerical methods. II: Realistic models and problems, Geophys.J. Int. 210 (2017), 833–851.CrossrefGoogle Scholar

  • [34]

    L. Heltai and A. Mola, Towards the Integration of CAD and FEM Using Open Source Libraries: a Collection of Deal.II Manifold Wrappers for the OpenCASCADE Library, SISSA, Report, 2015, Submitted.Google Scholar

  • [35]

    V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software 31 (2005), No. 3, 351–362.CrossrefGoogle Scholar

  • [36]

    M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley, An overview of the Trilinos project, ACM Trans. Math. Softw. 31 (2005), 397–423.CrossrefGoogle Scholar

  • [37]

    M. A. Heroux et al., Trilinos Web Page, 2018, http://trilinos.org.

  • [38]

    A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward, SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers, ACM Trans. Math. Software (TOMS) 31 (2005), No. 3, 363–396.CrossrefGoogle Scholar

  • [39]

    B. Janssen and G. Kanschat, Adaptive multilevel methods with local smoothing for H1 - and Hcurl-conforming high order finite element methods, SIAM J. Sci. Comput. 33 (2011), No. 4, 2095–2114.CrossrefGoogle Scholar

  • [40]

    G. Kanschat, Multi-level methods for discontinuous Galerkin FEM on locally refined meshes, Comput. & Struct. 82 (2004), No. 28, 2437–2445.CrossrefGoogle Scholar

  • [41]

    G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput. 20 (1998), No. 1, 359–392.CrossrefGoogle Scholar

  • [42]

    M. Kronbichler, T. Heister, and W. Bangerth, High accuracy mantle convection simulation through modern numerical methods, Geophys.J. Int. 191 (2012), 12–29.CrossrefGoogle Scholar

  • [43]

    M. Kronbichler and K. Kormann, A generic interface for parallel cell-based finite element operator application, Comput. Fluids 63 (2012), 135–147.CrossrefGoogle Scholar

  • [44]

    M. Kronbichler and K. Kormann, Fast Matrix-Free Evaluation of Discontinuous Galerkin Finite Element Operators, arXiv:1711.03590, Report, 2017.Google Scholar

  • [45]

    R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK User’s Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998.Google Scholar

  • [46]

    List of Changes for 9.0, https://www.dealii.org/developer/doxygen/deal.II/changes_between_8_5_and_9_0.html.

  • [47]

    LLVM, Clang-Tidy, http://clang.llvm.org/extra/clang-tidy/.

  • [48]

    M. Maier, M. Bardelloni, and L. Heltai, LinearOperator — a generic, high-level expression syntax for linear algebra, Comput. Math. Appl. 72 (2016), No. 1, 1–24.CrossrefGoogle Scholar

  • [49]

    M. Maier, M. Bardelloni, and L. Heltai, LinearOperatorBenchmarks, Version1.0.0, March 2016.Google Scholar

  • [50]

    MUMPS:aMUltifrontalMassivelyParallelsparsedirectSolver http://graal.ens-lyon.fr/MUMPS/.

  • [51]

    MuParser: Fast Math Parser Library, http://muparser.beltoforion.de/.

  • [52]

    OpenCASCADE:OpenCASCADETechnology,3DModeling&NumericalSimulation, http://www.opencascade.org/.

  • [53]

    J-P. V. Pelteret and A. McBride, The Deal.II Code Gallery: Quasi-Static Finite-Strain Compressible Elasticity, 2016, Accessed April 2018. doi: .CrossrefGoogle Scholar

  • [54]

    J. Reinders, Intel Threading Building Blocks, O’Reilly, 2007.Google Scholar

  • [55]

    R. Rew and G. Davis, NetCDF: an interface for scientific data access, IEEE Computer Graph. Appl. 10 (1990), No. 4, 76–82.CrossrefGoogle Scholar

  • [56]

    D. Ridzal and D. P. Kouri, Rapid Optimization Library, Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), Report, 2014.Google Scholar

  • [57]

    T. Schulze, A. Gessler, K. Kulling, D. Nadlinger, J. Klein, M. Sibly, and M. Gubisch, Open asset import library (assimp), Computer Software, URL: https://github.com/assimp/assimp (2012).Google Scholar

  • [58]

    The HDF Group, Hierarchical Data Format, Version 5, 1997–2018, http://www.hdfgroup.org/HDF5/.

  • [59]

    B. Turcksin, M. Kronbichler, and W. Bangerth, WorkStream – a design pattern for multicore-enabled finite element computations, ACM Trans. Math. Software 43 (2016), No.1, 2/1–2/29.Google Scholar

  • [60]

    A. Walther and A. Griewank, Getting started with ADOL-C, In: Combinatorial Scientific Computing (Eds. U. Naumann and O. Schenk), Chapman-Hall CRC Computational Science, pp. 181–202, 2012.Google Scholar

About the article

Received: 2018-05-22

Accepted: 2018-06-03

Published Online: 2018-12-14

Published in Print: 2018-12-19


Funding: deal.II and its developers are financially supported through a variety of funding sources:D. Arndt, K. Kormann and M. Kronbichler were partially supported by the German Research Foundation (DFG) under the project “High-order discontinuous Galerkin for the exa-scale” (ExaDG) within the priority program “Software for Exascale Computing” (SPPEXA).W. Bangerth and R. Gassmöller were partially supported by the National Science Foundation under award OCI-1148116 as part of the Software Infrastructure for Sustained Innovation (SI2) program; and by the Computational Infrastructure in Geodynamics initiative (CIG), through the National Science Foundation under Awards No. EAR-0949446 and EAR-1550901 and The University of California – Davis.V. Boddu was supported by the German Research Foundation (DFG) under the research group project FOR 1509.B. Brands was partially supported by the Indo-German exchange programm “Multiscale Modeling, Simulation and Optimization for Energy, Advanced Materials and Manufacturing” (MMSO) funded by DAAD (Germany) and UGC (India).D. Davydov was supported by the German Research Foundation (DFG), grant DA 1664/2-1.T. Heister was partially supported by NSF Award DMS-1522191, by the Computational Infrastructure in Geodynamics initiative (CIG), through the NSF under Award EAR-0949446 and EAR-1550901 and The University of California – Davis, and by Technical Data Analysis, Inc. through US Navy SBIR N16A-T003.M. Maier was partially supported by ARO MURI Award No. W911NF-14-0247.J-P. Pelteret was supported by the European Research Council (ERC) through the Advanced Grant 289049 MOCOPOLY.B. Turcksin: This material is based upon work supported by the U.S. Department of Energy, Office of Science, under contract number DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).D. Wells was supported by the National Science Foundation (NSF) through Grant DMS-1344962.The Interdisciplinary Center for Scientific Computing (IWR) at Heidelberg University has provided host-ing services for the deal.II web page.


Citation Information: Journal of Numerical Mathematics, Volume 26, Issue 4, Pages 173–183, ISSN (Online) 1569-3953, ISSN (Print) 1570-2820, DOI: https://doi.org/10.1515/jnma-2018-0054.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in