Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Numerical Mathematics

Editor-in-Chief: Hoppe, Ronald H. W. / Kuznetsov, Yuri

Managing Editor: Olshanskii, Maxim

Editorial Board: Benzi, Michele / Brenner, Susanne C. / Carstensen, Carsten / Dryja, M. / Feistauer, Miloslav / Glowinski, R. / Lazarov, Raytcho / Nataf, Frédéric / Neittaanmaki, P. / Bonito, Andrea / Quarteroni, Alfio / Guzman, Johnny / Rannacher, Rolf / Repin, Sergey I. / Shi, Zhong-ci / Tyrtyshnikov, Eugene E. / Zou, Jun / Simoncini, Valeria / Reusken, Arnold

4 Issues per year


IMPACT FACTOR 2016: 0.405
5-year IMPACT FACTOR: 2.212

CiteScore 2017: 0.96

SCImago Journal Rank (SJR) 2017: 0.494
Source Normalized Impact per Paper (SNIP) 2017: 0.772

Mathematical Citation Quotient (MCQ) 2016: 1.02

Online
ISSN
1569-3953
See all formats and pricing
More options …
Just Accepted

Issues

The deal.II Library, Version 9.0

Giovanni Alzetta / Daniel Arndt
  • Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wolfgang Bangerth / Vishal Boddu
  • Chair of Applied Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 5, 91058 Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benjamin Brands
  • Chair of Applied Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 5, 91058 Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Denis Davydov
  • Chair of Applied Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 5, 91058 Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rene Gassmöller
  • Department of Earth and Planetary Sciences, University of California Davis, One Shields Avenue, CA-95616 Davis, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Timo Heister / Luca Heltai / Katharina Kormann / Martin Kronbichler
  • Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matthias Maier
  • School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church Street SE, Minneapolis, MN 55455, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jean-Paul Pelteret
  • Chair of Applied Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 5, 91058 Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bruno Turcksin
  • Computational Engineering and Energy Sciences Group, Computional Sciences and Engineering Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd., TN 37831, Oak Ridge, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David Wells
Published Online: 2018-06-09 | DOI: https://doi.org/10.1515/jnma-2018-0054

Abstract

This paper provides an overview of the new features of the finite element library deal.II version 9.0.

References

  • [1]

    P. Amestoy, I. Duff, and J.-Y. ĽExcellent. Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods in Appl. Mech. Eng., 184:501–520, 2000.CrossrefGoogle Scholar

  • [2]

    P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. ĽExcellent. A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications, 23(1):15–41, 2001.CrossrefGoogle Scholar

  • [3]

    P. R. Amestoy, A. Guermouche, J.-Y. ĽExcellent, and S. Pralet. Hybrid scheduling for the parallel solution of linear systems. Parallel Computing, 32(2):136–156, 2006.CrossrefGoogle Scholar

  • [4]

    E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.Google Scholar

  • [5]

    D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells. The deal.II library, version 8.5. Journal of Numerical Mathematics, 25(3):137–146, 2017.Google Scholar

  • [6]

    S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. May, L. C. McInnes, R. Mills, T. Munson, K. Rupp, P. S. B. F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 3.9, Argonne National Laboratory, 2018.Google Scholar

  • [7]

    S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. May, L. C. McInnes, R. Mills, T. Munson, K. Rupp, P. S. B. F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc Web page. http://www.mcs.anl.gov/petsc, 2018.

  • [8]

    W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. Algorithms and data structures for massively parallel generic adaptive finite element codes. ACM Trans. Math. Softw., 38:14/1–28, 2011.Google Scholar

  • [9]

    W. Bangerth, D. Davydov, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and D. Wells. The deal.II library, version 8.4. Journal of Numerical Mathematics, 24(3):135–141, 2016.Google Scholar

  • [10]

    W. Bangerth, R. Hartmann, and G. Kanschat. deal.II — a general purpose object oriented finite element library. ACM Trans. Math. Softw., 33(4), 2007.Google Scholar

  • [11]

    W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, and B. Turcksin. The deal.II library, version 8.3. Archive of Numerical Software, 4(100):1–11, 2016.Google Scholar

  • [12]

    W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and T. D. Young. The deal.II library, version 8.0. arXiv preprint http://arxiv.org/abs/1312.2266v3, 2013.Google Scholar

  • [13]

    W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and T. D. Young. The deal.II library, version 8.1. arXiv preprint http://arxiv.org/abs/1312.2266v4, 2013.Google Scholar

  • [14]

    W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and T. D. Young. The deal.II library, version 8.2. Archive of Numerical Software, 3, 2015.Google Scholar

  • [15]

    W. Bangerth and G. Kanschat. Concepts for object-oriented finite element software – the deal.II library. Preprint 1999-43, SFB 359, Heidelberg, 1999.Google Scholar

  • [16]

    W. Bangerth and O. Kayser-Herold. Data structures and requirements for hp finite element software. ACM Trans. Math. Softw., 36(1):4/1–4/31, 2009.CrossrefGoogle Scholar

  • [17]

    R. A. Bartlett, D. M. Gay, and E. T. Phipps. Automatic differentiation of c++ codes for large-scale scientific computing. In V. Alexandrov, G. van Albada, and J. Sloot, P.M.A. amd Dongarra, editors, International Conference on Computational ScienceICCS 2006, pages 525–532. Springer Berlin Heidelberg, 2006.Google Scholar

  • [18]

    L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.Google Scholar

  • [19]

    J. L. Blanco and P. K. Rai. nanoflann: aC++ header-only fork of FLANN, a library for Nearest Neighbor (NN) with KD-trees. https://github.com/jlblancoc/nanoflann, 2014.

  • [20]

    C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput., 33(3):1103–1133, 2011.CrossrefGoogle Scholar

  • [21]

    Coverity Scan (Synopsys, Inc.). https://scan.coverity.com.

  • [22]

    cuSOLVERLibrary. https://docs.nvidia.com/cuda/cusolver/index.html.

  • [23]

    cuSPARSE Library. https://docs.nvidia.com/cuda/cusparse/index.html.

  • [24]

    T. A. Davis. Algorithm 832: UMFPACK V4.3–an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw., 30:196–199, 2004.CrossrefGoogle Scholar

  • [25]

    D. Davydov, T. Gerasimov, J.-P. Pelteret, and P. Steinmann. Convergence study of the h-adaptive pum and the hp-adaptive fem applied to eigenvalue problems in quantum mechanics. Advanced Modeling and Simulation in Engineering Sciences, 4(1):7, Dec 2017.CrossrefGoogle Scholar

  • [26]

    A. DeSimone, L. Heltai, and C. Manigrasso. Tools for the solution of PDEs defined on curved manifolds with deal.II. Technical Report 42/2009/M, SISSA, 2009.Google Scholar

  • [27]

    M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, and R. Ulerich. Gnu scientific library reference manual (edition 2.3), 2016.Google Scholar

  • [28]

    R. Gassmöller, E. Heien, E. G. Puckett, and W. Bangerth. Flexible and scalable particle-in-cell methods for massively parallel computations. Technical report, arXiv:1612.03369, 2016.Google Scholar

  • [29]

    R. Gassmöller, H. Lokavarapu, E. Heien, E. G. Puckett, and W. Bangerth. Flexible and scalable particle-in-cell methods with adaptive mesh refinement for geodynamic computations. submitted, 2018.Google Scholar

  • [30]

    C. Geuzaine and J.-F. Remacle. Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities. International journal for numerical methods in engineering, 79(11):1309– 1331, 2009.CrossrefGoogle Scholar

  • [31]

    N. Giuliani, A. Mola, and L. Heltai. π-BEM: A flexible parallel implementation for adaptive, geometry aware, and high order boundary element methods. Advances in Engineering Software, 121(March):39–58, 2018.CrossrefGoogle Scholar

  • [32]

    A. Griewank, D. Juedes, and J. Utke. Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++. ACM Transactions on Mathematical Software (TOMS), 22(2):131–167, 1996.CrossrefGoogle Scholar

  • [33]

    T. Heister, J. Dannberg, R. Gassmöller, and W. Bangerth. High accuracy mantle convection simulation through modern numerical methods. II: Realistic models and problems. Geophysics Journal International, 210:833–851, 2017.CrossrefGoogle Scholar

  • [34]

    L. Heltai and A. Mola. Towards the Integration of CAD and FEM using open source libraries: a Collection of deal.II Manifold Wrappers for the OpenCASCADE Library. Technical report, SISSA, 2015. Submitted.Google Scholar

  • [35]

    V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Software, 31(3):351–362, 2005.CrossrefGoogle Scholar

  • [36]

    M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley. An overview of the Trilinos project. ACM Trans. Math. Softw., 31:397–423, 2005.CrossrefGoogle Scholar

  • [37]

    M. A. Heroux et al. Trilinos web page, 2018. http://trilinos.org.

  • [38]

    A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software (TOMS), 31(3):363–396, 2005.CrossrefGoogle Scholar

  • [39]

    B. Janssen and G. Kanschat. Adaptive multilevel methods with local smoothing for H1- and Hcurl-conforming high order finite element methods. SIAM J. Sci. Comput., 33(4):2095–2114, 2011.CrossrefGoogle Scholar

  • [40]

    G. Kanschat. Multi-level methods for discontinuous Galerkin FEM on locally refined meshes. Comput. & Struct., 82(28):2437–2445, 2004.CrossrefGoogle Scholar

  • [41]

    G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359 –392, 1998.CrossrefGoogle Scholar

  • [42]

    M. Kronbichler, T. Heister, and W. Bangerth. High accuracy mantle convection simulation through modern numerical methods. Geophysics Journal International, 191:12–29, 2012.CrossrefGoogle Scholar

  • [43]

    M. Kronbichler and K. Kormann. A generic interface for parallel cell-based finite element operator application. Comput. Fluids, 63:135–147, 2012.CrossrefGoogle Scholar

  • [44]

    M. Kronbichler and K. Kormann. Fast matrix-free evaluation of discontinuous Galerkin finite element operators. Technical report, arXiv:1711.03590, 2017.Google Scholar

  • [45]

    R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, Philadelphia, 1998.Google Scholar

  • [46]

    List of changes for 9.0. https://www.dealii.org/developer/doxygen/deal.II/changes_between_8_5_and_9_0.html.

  • [47]

    LLVM. Clang-Tidy. http://clang.llvm.org/extra/clang-tidy/.

  • [48]

    M. Maier, M. Bardelloni, and L. Heltai. LinearOperator – a generic, high-level expression syntax for linear algebra. Computers and Mathematics with Applications, 72(1):1–24, 2016.CrossrefGoogle Scholar

  • [49]

    M. Maier, M. Bardelloni, and L. Heltai. LinearOperator Benchmarks, Version 1.0.0, Mar. 2016.Google Scholar

  • [50]

    MUMPS: a MUltifrontal Massively Parallel sparse direct Solver. http://graal.ens-lyon.fr/MUMPS/.

  • [51]

    muparser: Fast Math Parser Library. http://muparser.beltoforion.de/.

  • [52]

    OpenCASCADE: Open CASCADE Technology, 3D modeling & numerical simulation. http://www.opencascade.org/.

  • [53]

    J.-P. V. Pelteret and A. McBride. The deal.II code gallery: Quasi-static finite-strain compressible elasticity, 2016. Accessed April 2018. .CrossrefGoogle Scholar

  • [54]

    J. Reinders. Intel Threading Building Blocks. O’Reilly, 2007.Google Scholar

  • [55]

    R. Rew and G. Davis. NetCDF: an interface for scientific data access. Computer Graphics and Applications, IEEE, 10(4):76–82, 1990.CrossrefGoogle Scholar

  • [56]

    D. Ridzal and D. P. Kouri. Rapid optimization library. Technical report, Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), 2014.Google Scholar

  • [57]

    T. Schulze, A. Gessler, K. Kulling, D. Nadlinger, J. Klein, M. Sibly, and M. Gubisch. Open asset import library (assimp). Computer Software, URL: https://github.com/assimp/assimp, 2012.

  • [58]

    The HDF Group. Hierarchical Data Format, version 5, 1997–2018. http://www.hdfgroup.org/HDF5/.

  • [59]

    B. Turcksin, M. Kronbichler, and W. Bangerth. WorkStream – a design pattern for multicoreenabled finite element computations. ACM Transactions on Mathematical Software, 43(1):2/1–2/29, 2016.CrossrefGoogle Scholar

  • [60]

    A. Walther and A. Griewank. Getting started with ADOL-C. In Combinatorial Scientific Computing, Chapman-Hall CRC Computational Science, pages 181–202. U. Naumann and O.Schenk, 2012.Google Scholar

About the article

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).


Published Online: 2018-06-09


Citation Information: Journal of Numerical Mathematics, ISSN (Online) 1569-3953, ISSN (Print) 1570-2820, DOI: https://doi.org/10.1515/jnma-2018-0054.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in