Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Optical Communications

Editor-in-Chief: Kersten, Ralf Th.

Editorial Board: Aggarwal, Ishwar / Amann, M.C. / Artiglia, Massimo / Ballato, John / Elmirghani, J.M.H. / Fechner, Rainer / Kanamori, Hiroo / Lösch, Kurt / Papuchon, Michel


CiteScore 2018: 0.51

SCImago Journal Rank (SJR) 2018: 0.157
Source Normalized Impact per Paper (SNIP) 2018: 0.281

Online
ISSN
2191-6322
See all formats and pricing
More options …
Volume 37, Issue 2

Issues

Analysis of the Performance of a PAM/PPM/OOK System Operating with OCDMA, under Nonlinear Optical Effects in Optical Fiber Propagation

D. G. Correia
  • Laboratório de Fotônica, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, CEP: 60040-215, Fortaleza, Ceará, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. C. Sales
  • Laboratório de Telecomunicações e Ciência e Engenharia de Materiais (LOCEM), Universidade Federal do Ceará, Departamento de Física, Caixa Postal 6030, CEP: 60455-760, Fortaleza, Ceará, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. V. F. Pinto / L. P. Moura / A. C. Ferreira
  • Laboratório de Fotônica, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, CEP: 60040-215, Fortaleza, Ceará, Brazil
  • IFCE, Programa de Pós-Graduação em Engenharia Telecomunicações Fortaleza, CE, Brazil
  • Laboratório de Telecomunicações e Ciência e Engenharia de Materiais (LOCEM), Universidade Federal do Ceará, Departamento de Física, Caixa Postal 6030, CEP: 60455-760, Fortaleza, Ceará, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. W. M. Menezes
  • Laboratório de Fotônica, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, CEP: 60040-215, Fortaleza, Ceará, Brazil
  • IFCE, Programa de Pós-Graduação em Engenharia Telecomunicações Fortaleza, CE, Brazil
  • Laboratório de Telecomunicações e Ciência e Engenharia de Materiais (LOCEM), Universidade Federal do Ceará, Departamento de Física, Caixa Postal 6030, CEP: 60455-760, Fortaleza, Ceará, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. F. Guimarães
  • Corresponding author
  • Laboratório de Fotônica, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, CEP: 60040-215, Fortaleza, Ceará, Brazil
  • IFCE, Programa de Pós-Graduação em Engenharia Telecomunicações Fortaleza, CE, Brazil
  • Laboratório de Telecomunicações e Ciência e Engenharia de Materiais (LOCEM), Universidade Federal do Ceará, Departamento de Física, Caixa Postal 6030, CEP: 60455-760, Fortaleza, Ceará, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. S. B. Sombra
  • Laboratório de Telecomunicações e Ciência e Engenharia de Materiais (LOCEM), Universidade Federal do Ceará, Departamento de Física, Caixa Postal 6030, CEP: 60455-760, Fortaleza, Ceará, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-20 | DOI: https://doi.org/10.1515/joc-2015-0053

Abstract

In this article, we present a numerical simulation study of encoding, decoding and propagation performance of short optical pulses and words with modulations OOK, PAM and PPM in OCDMA systems (Optical Code Division Multiple Access). The encoding and decoding of short pulses are obtained through fiber Bragg grating(FBG – FBG optical) devices, where the codes are inserted through discrete jumps in the optical phase (±π) where Gold codes were used. A figure of merit (SNR – Signal to Noise Ratio) was obtained to quantify the interference in propagation of short optical pulses. An increase in the temporal width was observed. For decoded pulses due to the nonlinearity effect, we observed an increase of 1.3 ps considering the propagation with γ=3 W–1 km–1 and γ=24 W–1 km–1. Analysis of coding and decoding words “a” and “w” was done. Considering the propagation (with γ=9 W–1 km–1) of a word “w”, an error occurred in all modulations except for simultaneous PPM/PAM modulation, which is associated to the better autocorrelation characteristics obtained with the OOK, PAM and PPM modulations alone, and could double the transmission rate. The nonlinear effects directly affect the process of the autocorrelation codes due to interference from adjacent chip components of the code.

Keywords: Fiber Bragg grating; OCDMA; OOK; PAM and PPM modulation; all-optical digital signal processing

References

  • 1. Sobrinho CS, Ferreira AC, Menezes JW, Guimarães GF, Fraga WB, Filho AF, et al. Analysis of an optical logic gate using a symmetric coupler operating with pulse position modulation (PPM). Opt Commun 2008;281:1056–64.Web of ScienceGoogle Scholar

  • 2. Da Silva GL, Gleria I, Lyra ML, Sombra ASB. Modulational instability in lossless fibers with saturable delayed nonlinear response. J Opt Soc Am B: Opt Phys 2009;26:183–8.Google Scholar

  • 3. Menezes JW, Fraga WB, Lima FT, Guimarães GF, Ferreira AC, Lyra ML, et al. Study of the performance of an all-optical half adder based on three-core nonlinear directional fiber coupler under delayed and instantaneous nonlinear Kerr response. Fiber Integr Opt 2011;30:201–30.Google Scholar

  • 4. Ferreira AC, Sobrinho CS, Menezes JW, Fraga WB, Rocha HH, Wirth A, et al. A performance study of an all-optical logic gate based in PAM-ASK. J Mod Opt 2009;56:1004–13.Google Scholar

  • 5. Menezes JW, Fraga WB, Ferreira AC, Sabóia KD, Filho AF, Guimarães GF, et al. Logic gates based in two and three-modes nonlinear optical fiber couplers. Opt Quantum Electron 2007;39:1191–206.Google Scholar

  • 6. Menezes JW, Fraga WB, Ferreira AC, Guimarães GF, Filho AF, Sobrinho CS, et al. All-optical half adder using all-optical XOR and AND gates for optical generation of ‘SUM’ and ‘CARRY’. Fiber Integr Opt 2010;29:254–71.Google Scholar

  • 7. Canabarro AA, Santos B, Gleria I, Lyra ML, Sombra AS. Interplay of XPM and nonlinear response time in the modulational instability of copropagating optical pulses. J Opt Soc Am B 2010;27:1878–85.Web of ScienceGoogle Scholar

  • 8. Agrawal GP. Lightwave technology: components and devices. New Jersey, USA: John Wiley & Sons, 2004.Google Scholar

  • 9. Sabóia KD, Ferreira AC, Sobrinho CS, Fraga WB, Menezes JW, Lyra ML, et al.. Optical cryptography under PPM-PAM modulation based in short optical pulses in an acoustic-optic tunable filter (AOTF). Opt Quantum Electron 2009;41:963–80.Web of ScienceGoogle Scholar

  • 10. Prucnal PR. Optical code division multiple access: fundamentals and applications. Florida, USA: CRC Press, 2005.Google Scholar

  • 11. Teh PC, Petropoulos P, Ibsen M, Richardson DJ. A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings. J Lightwave Technol 2001;19:1352.Google Scholar

  • 12. Guimarães GF, Bastos AM, Ferreira AC, Queiroz AS, Menezes JW, Sousa JR, et al. Analysis of the performance of optical code-division multiple-access system (OCDMA), operating with gold codes under nonlinear effects. J Electromagn Anal Appl 2013;5:49–57.Google Scholar

  • 13. Huang J-Fa, Chen K-S, Lin Y-C, Li C-Yu. Reconfiguring waveguide-gratings-based M-signature codecs to enhance OCDMA network confidentiality. Opt Commun 2014;313:223–30.Google Scholar

  • 14. Ahmed N, Aljunid SA, Fadil A, Ahmad RB, Rashid MA. Performance enhancement of OCDMA system using NAND detection with modified double weight (MDW) code for optical access network. Optik 2013;124:1402–7.Web of ScienceGoogle Scholar

  • 15. Osadola TB, Idris SK, Glesk I, Kwong WC. Effect of variations in environmental temperature on 2D-WH/TS OCDMA code performance. J Opt Commun Netw 2013;5:68–73.Google Scholar

  • 16. Udalcovs A, Monti P, Bobrovs V, Schatz R, Wosinska L. Power efficiency of WDM networks using various modulation formats with spectral efficiency limited by linear crosstalk. Opt Commun 2014;318:31–6.Google Scholar

  • 17. Fu M, Zhang L, Le Z. Crosstalk analysis of the ring light-trail networks. Optik 2013;124:2339–44.Web of ScienceGoogle Scholar

  • 18. Sabbagh AG, Kakhki MM. Performance analysis of two-level asynchronous optical CDMA systems utilizing wrapped OPPM. J Ligthwave Technol 2014;32:122–9.Web of ScienceGoogle Scholar

  • 19. Tsai C-Mu, Huang J-Fa. Reduction of leakage effect with circulator-free fiber-gratings codec array in OCDMA network. Opt Fiber Technol 2009;15:445–50.Google Scholar

  • 20. Anuar MS, Aljunid SA, Saad NM, Hamzah SM. New design of spectral amplitude coding in OCDMA with zero cross-correlation. Opt Commun 2009;282:2659–64.Web of ScienceGoogle Scholar

  • 21. Eltaif T, Shalaby HM, Shaari S, Hamarsheh MM. Performance analysis of a hybrid fiber Bragg grating-based spectral-amplitude-coding/successive interference cancellation for optical CDMA systems. Opt Commun 2009;282:1–6.Google Scholar

  • 22. Hamarsheh MM, Abdullaha MK, Khatun S, Shalaby HM. Fast frequency modulation optical code division multiple access communication system. Opt Laser Technol 2007;39:605–9.Web of ScienceGoogle Scholar

  • 23. Yang C-C. The application of spectral-amplitude-coding optical CDMA in passive optical networks. Opt Fiber Technol 2008;14:134–42.Web of ScienceGoogle Scholar

  • 24. Soni N, Singh J. Performance evaluation of the phase encoded optical CDMA system. Optik 2010;121:788–92.Google Scholar

  • 25. Kim SC, Roh S, Shin S, Lee B. Code reusuable optical CDMA system using an array of superstructured fiber Bragg gratings. Opt Fiber Technol 2009;15:136–40.Google Scholar

  • 26. Dinan EH, Jabbari B. Spreading codes for direct sequence CDMA and wideband CDMA cellular networks. IEEE Commun Mag 1998;36:48–54.Google Scholar

  • 27. Huang S-C, Yi J-Y. Crosstalk and phase-noise reduction in time-division multiplexing of polarization-insensitive fiber optic Michelson interferometric sensors. Sens Actuators A: Phys 2014;208:21–9.Google Scholar

  • 28. Rashidi CB, Aljunid SA, Ghani F, Fadhil HA, Anuar MS. New design of flexible cross correlation (FCC) code for SAC OCDMA system. Proc Eng 2013;53:420–7.Google Scholar

  • 29. Thanaa Hussein A, Aljunid SA, Fadhil HA. A new code design for spectral amplitude coding optical CDMA systems using fiber Bragg-grating. J Opt 2013;42:110–15.Google Scholar

  • 30. Kashyap R. A new class of fibre grating based band-pass filters: The asymmetric interferometer. Opt Commun 1998;153:14-18.Google Scholar

  • 31. Kashyap R. Fibre Bragg gratings. London: Academic Press, 1999.Google Scholar

  • 32. Murakami Y. Characteristics of a grating-folded optical directional coupler. Fibre Integr Opt 2005;24:445–56.Google Scholar

  • 33. Chen LR, Benjamin SD, Smith PW, Sipe JE. Ultrashort pulse reflection from fiber gratings: a numerical investigation. J Lightwave Technol 1997;15:8.Google Scholar

  • 34. Agrawal GP. Applications of nonlinear fiber optics. California, USA: Academic Press, 2009.Google Scholar

  • 35. Lee JS, Miller LE. CDMA systems engineering handbook. Massachusetts, USA: Artech House, Inc., 1998.Google Scholar

  • 36. Peterson RL, Ziemer RE, Borth DE. Introduction to spread-spectrum communications. New Jersey, USA: Prentice Hall, 1995.Google Scholar

  • 37. Agrawal GP. Nonlinear fiber optics. California, USA: Academic Press, 2007.Google Scholar

  • 38. van der Houwen PJ. The development of Runge-Kutta methods for partial differential Equations. Appl Numer Math 1996;20:261–72.Google Scholar

  • 39. Benmostefa N, Meliani M, Ouslimani H. Metamaterial tunable filter design. J Electromagn Anal Appl 2013;5:250–4.Google Scholar

  • 40. Agrawal GP. Fiber-optic communication systems, New Jersey, USA: John Wiley & Sons, 2012.Google Scholar

  • 41. Sabbagh AG, Kakhki MM. Capacity analysis of asynchronous optical CDMA systems utilizing wrapped OPPM: multiple access interference limited case. J Lightw Technol 2013;31:2613–20.Web of ScienceGoogle Scholar

About the article

Received: 2015-06-03

Accepted: 2015-08-20

Published Online: 2015-10-20

Published in Print: 2016-06-01


Citation Information: Journal of Optical Communications, Volume 37, Issue 2, Pages 233–246, ISSN (Online) 2191-6322, ISSN (Print) 0173-4911, DOI: https://doi.org/10.1515/joc-2015-0053.

Export Citation

©2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in