Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Sjöberg, Lars

1 Issue per year

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

GPS Landslide Monitoring: Single Base vs. Network Solutions — A case study based on the Puerto Rico and Virgin Islands Permanent GPS Network

Guoquan Wang
  • Puerto Rico Seismic Network, Department of Geology, University of Puerto Rico, P.O. Box 9000, Mayaguez, PR 00681, U.S.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-06-29 | DOI: https://doi.org/10.2478/v10156-010-0022-3

GPS Landslide Monitoring: Single Base vs. Network Solutions — A case study based on the Puerto Rico and Virgin Islands Permanent GPS Network

This study demonstrated an approach to using permanent GPS stations from a local continuous GPS network as no-cost references in conducting long-term millimeter-level landslide monitoring. Accuracy and outliers from a series of single-base and network GPS measurements of a creeping landslide were studied. The criterion for accuracy was the weighted root-mean-square (RMS) of residuals of GPS measurements with respect to true landslide displacements over a period of 14 months. This investigation indicated that the current Puerto Rico and Virgin Islands GPS network, as a reference frame, can provide accuracy of 1 to 2 mm horizontally and 6 mm vertically for local 24-hour continuous landslide monitoring with few outliers (<1%). The accuracy degraded by a factor of two for 6-hour sessions, and more for shorter sessions. This study indicated that adding a few reference stations to GPS data processing can reduce the number of outliers and increase the accuracy and robustness of landslide surveying, even if these references are far from the study site. This improvement was particularly significant for short sessions and vertical components. The accuracy of network solutions depended slightly on the number of reference stations, but the dependence on the distance and geometric distribution of the references was weak. For long-term landslide monitoring, accuracy under 5 mm horizontally and 15 mm vertically are often expected. Accuracy at this level can be stably achieved in the Puerto Rico and Virgin Islands region by performing field observations for 4 hours or longer, and applying 3 or more reference stations for solving a network solution. This study also indicated that rainfall events can play a crucial rule in high-precision GPS measurements. GPS data collected during heavy rainfall events should be cautiously analyzed in landslide studies.

Keywords: GPS accuracy; landslide monitoring; Puerto Rico; single base; network; outlier; rainfall

  • Altamimi Z., Collilieux X., Legrand J., Garayt B., Boucher C., 2007, ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters, J. Geophys. Res., 112, B09401, doi:10.1029/2007JB004949.CrossrefWeb of ScienceGoogle Scholar

  • Bevis M. M., Chiswell S., Businger S., 1995, GPS/STORM—GPS sensing of atmospheric water vapor for meteorology, Journal of Atmospheric and Oceanic Technology, 12: 468-478.Web of ScienceGoogle Scholar

  • Boehm J., Niell A., Tregoning P., Schuh H., 2006, Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geopgys. Res. Lett., 33, L07304, doi:10.1029/2005/GL025546.CrossrefGoogle Scholar

  • Brückl E., Brunner F. K., Kraus K., 2006, Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data, Engineering Geology, 88: 149-159.CrossrefGoogle Scholar

  • Brunner F., Welsch W. M., 1993, Effect of the troposphere on GPS measurements, GPS World, 4(1): 42-51.Google Scholar

  • Chen G., Herring T. A., 1997, Effects of atmospheric azimuthal asymmetry of the analysis of space geodetic data, J. Geophys. Res., 102: 20,489-20,502.Google Scholar

  • Coe J. A., Ellis W. L., Godt J. W., Savage W. Z., Savage J. E., Michael J. A., Kibler J. D., Powers P. S., Lidke D. J., Debray S., 2003, Seasonal movement of the Slumgullion landslide determined from Global Positioning System surveys and field instrumentation, July 1998-March 2002, Engineering Geology, 68: 67-101.CrossrefGoogle Scholar

  • Davis J. L., Elgered G., Niell A. E., Kuehn C. E., 1993, Ground-based measurement of gradients in the "wet" radio refractive index of air, Radio Sci., 28: 1003-1018.CrossrefGoogle Scholar

  • Dodson A. H., Shardlow P. J., Hubbard L. C. M., Elgered G., Jarlemark P. O. J., 1996, Wet tropospheric effects on precise relative GPS height determination, Journal of Geodesy, 70: 188-202.CrossrefGoogle Scholar

  • Dong D., Herring T. A., King R. W., 1998, Estimating regional deformation from a combination of space and terrestrial geodetic data, J. Geod., 72: 200-214.Google Scholar

  • Dow J. M., Neilan R. E., Rizos C., 2009, The international GNSS Service in a changing landscape of Global Navigation Satellite Systems, J. Geod., 83: 191-198.Google Scholar

  • Eckl M. C., Snay R. A., Soler T., Cline M. W., Mader G. L., 2001, Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration, J. Geod., 75: 633-640.Google Scholar

  • Firuzabadi D., King R. W., 2011, GPS precision as a function of session duration and reference frame using multi-point software, GPS Solutions (doi: 10.1007/s10291-011-0218-8).Web of ScienceCrossrefGoogle Scholar

  • Gili J. A., Corominas J., Rius J., 2000, Using Global Positioning System techniques in landslide monitoring, Engineering Geology, 55: 167-192.CrossrefGoogle Scholar

  • Gregorius T., Blewitt G., 1998, The effect of weather fronts on GPS measurements, GPS World, 1998-May, 52-60.Google Scholar

  • Herring T. A., King R. W., McCluskey S. M., 2009, Introduction to GAMIT/GLOBK, Release 10.35, mass. Instit. of Tech., Cambridge.Google Scholar

  • Iwabuchi T., Miyazaki S., Heki K., Naito I., Hatanaka Y., 2003, An Impact of estimating tropospheric delay gradients on tropospheric delay estimations in the summer using the Japanese nationwide GPS array, Journal of Geophysical Research, 108 (D10), 4315, doi:10.1029/2002JD002214.CrossrefGoogle Scholar

  • Janes H. W., Langley R. B., Newby S. P., 1989, A comparison of several models for the prediction of tropospheric propagation delay, Proceedings of the Fifth International Geodetic Symposium on Satellite Positioning, Las Cruces, New Mexico, March 13-17, vol. 1, 28-52.Google Scholar

  • Jibson R. W., 1986, Evaluation of landslide hazards resulting from the 5-8 October 1985 storm in Puerto Rico, Jibson R. W., 1989, Debris flows in southern Puerto Rico. Geol. Soc. Am., Special paper 236: 29-55.Google Scholar

  • Larson K. M, Small E. E., Gutmann E. D., Bilich A., Axelrad P., Braun J. J., 2008a, Using GPS multipath to measure soil moisture fluctuations: Initial results, GPS Solut., 12(3): 173-177, doi:10.1007/s10291-007-0076-6.Web of ScienceCrossrefGoogle Scholar

  • Larson K. M., Small E. E., Gutmann E. D., Bilich A. L., Braun J. J., Zavorotny V. U., 2008b, Use of GPS receivers as a soil moisture network for water cycle studies, Geophys. Res. Let., 35, L24405, doi:10.1029/2008GL036013.CrossrefGoogle Scholar

  • Larson K. M., Braun J. J., Small E. E., Zavorotny V. U., Gutmann E. D., Bilich A. L., 2010, GPS multipath and its relation to near-surface soil moisture content, IEEE J-STARS, 3: 91-99, doi: 10.1109/JSTARS.2009.2033612.CrossrefGoogle Scholar

  • MacMillan D. S., 1995, Atmospheric gradients from very long baseline interferometry observations, Geophys. Res. Let., 22(9): 1041-1044.Google Scholar

  • Malet J. P., Maquaire O., Calais E., 2002, The use of Global Positioning System techniques for the continuous monitoring of landslides—application to the Super-Sauze earthflow (Alpesde Haute-Province, France), Geomorphology, 43: 33-54.CrossrefGoogle Scholar

  • Mie G., 1908, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallšungen, Annals of Physics, Vol. 25: 377-445.Google Scholar

  • Mora P., Baldi P., Casula G., Fabris M., Ghirotti M., Mazzini E., Pesci A., 2003, Global Positioning Systems and digital photogrammetry for the monitoring of mass movements: application to the Ca di Malta landslide (northern Apennines, Italy), Engineering Geology, 68: 103-121.CrossrefGoogle Scholar

  • Olsen R.L., Rogers D.V., Hodge D.B., 1978, The aRb relation in the calculation of rain attenuation, IEEE Trans. Ant. Prop., Vol. AP-26: 318-329.CrossrefGoogle Scholar

  • Peyret M., Djamour Y., Rizza M., Ritz J. F., Hurtrez J. E., Goudarzi M. A., Nankali H., Chery J., Le Dortz K., Uri F., 2008, Monitoring of the large slow Kahrod landslide in Alboz mountain range (Iran) by GPS and SAR interferometry, Engineering Geology, 100: 131-141.CrossrefWeb of ScienceGoogle Scholar

  • Psimoulis P., Ghilardi M., Fouache E., Stiros S., 2007, Subsidence and evolution of the Thessaloniki plain, Greece, based on historical leveling and GPS data, Engineering Geology, 90: 55-70.Web of ScienceCrossrefGoogle Scholar

  • Ray P. S., 1972, Broadband complex refractive indices of ice and water, Applied Optics, 11 (8): 1836-1844.CrossrefPubMedGoogle Scholar

  • Rocken C., Hove T. V., Johnson J., Solheim F., Ware R., 1995, GPS/STORM—GPS sensing of atmospheric water vapor for meteorology, Journal of Atmospheric and Oceanic Technology, 12: 468-478.Web of ScienceCrossrefGoogle Scholar

  • Saastamoinen J., 1972, Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites, The use artificial satellites for geodesy. Edited by S. W. Henricksen, A. Mancini, B. H. Chovitz, Geophysical Monograph 15, American Geophysical Union, Washington D. C., pp. 247-251.Google Scholar

  • Sato H. P., Abe K., Ootaki O., 2003, GPS-measured land subsidence in Ojiya City, Niigata Prefecture, Japan, Engineering Geology, 67: 379-390.CrossrefGoogle Scholar

  • Soler T., Michalak P., Weston N. D., Snay R. A., Foote R. H., 2006, Accuracy of OPUS solution for 1- to 4-h observing sessions, GPS Solution, 10: 45-55, doi:10.1007/s10291-005-00087-3.Google Scholar

  • Squarzoni C., Delacourt C., Allemand P., 2005, Differential single-frequency GPS monitoring of the La Valette landslide (French Apls), Engineering Geology, 79: 215-229.CrossrefGoogle Scholar

  • Tagliavini F., Mantovani M., Marcato G., Pasuto A., Silvano S., 2007, Validation of landslide hazard assessment by means of GPS monitoring technique— a case study in the Dolomites (Eastern Alps, Italy), Natural Hazards and Earth System Sciences, 7: 185-193.Web of ScienceCrossrefGoogle Scholar

  • Wang G., Phillips D., Joyce J., Rivera F. O., 2011, The Integration of TLS and Continuous GPS to Study Landslide Deformation: A Case Study in Puerto Rico, Journal of Geodetic Science, 1(1): 25-34, doi: 10.2478/v10156-010-0004-5.CrossrefGoogle Scholar

  • Wu S. C., 1979, Optimum frequencies of a passive microwave radiowave radiometer for tropospheric path-length correction, IEEE Transactions on antennas and propagation, 27(2): 233-239.Google Scholar

About the article


Published Online: 2011-06-29

Published in Print: 2011-09-01


Citation Information: Journal of Geodetic Science, ISSN (Online) 2081-9943, ISSN (Print) 2081-9919, DOI: https://doi.org/10.2478/v10156-010-0022-3.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
[2]
Guoquan Wang, Michael Turco, Tomás Soler, Timothy J. Kearns, and Jennifer Welch
Journal of Surveying Engineering, 2017, Volume 143, Number 4, Page 05017005
[3]
Romy Schlögel, Benni Thiebes, Marco Mulas, Giovanni Cuozzo, Claudia Notarnicola, Stefan Schneiderbauer, Mattia Crespi, Augusto Mazzoni, Volkmar Mair, and Alessandro Corsini
Remote Sensing, 2017, Volume 9, Number 7, Page 739
[4]
Xin Zhou, Guoquan Wang, Yan Bao, Lin Xiong, Veronica Guzman, and Timothy J. Kearns
Journal of Surveying Engineering, 2017, Volume 143, Number 4, Page 04017008
[5]
Linqiang Yang, Guoquan Wang, Victor Huérfano, Christa G. von Hillebrandt-Andrade, Jose A. Martínez-Cruzado, and Hanlin Liu
Natural Hazards, 2016, Volume 83, Number 1, Page 641
[6]
J. Yu and G. Wang
Survey Review, 2017, Volume 49, Number 352, Page 51
[7]
Tomás Soler and Guoquan Wang
Journal of Surveying Engineering, 2016, Volume 142, Number 4, Page 05016003
[8]
Stefano Caldera, Eugenio Realini, Riccardo Barzaghi, Mirko Reguzzoni, and Fernando Sansò
Journal of Surveying Engineering, 2016, Volume 142, Number 3, Page 04015016
[9]
Linqiang Yang, Guoquan Wang, Yan Bao, Timothy J. Kearns, and Jiangbo Yu
Journal of Surveying Engineering, 2016, Volume 142, Number 3, Page 05015006
[10]
Timothy J. Kearns, Guoquan Wang, Yan Bao, Jiajun Jiang, and Dongje Lee
Journal of Surveying Engineering, 2015, Volume 141, Number 4, Page 05015002
[11]
Guoquan Wang, Yan Bao, Yanet Cuddus, Xueyi Jia, John Serna, and Qi Jing
Natural Hazards, 2015, Volume 77, Number 3, Page 1939
[12]
Guoquan Wang and Tomás Soler
Journal of Surveying Engineering, 2015, Volume 141, Number 2, Page 05014004
[13]
Jiangbo Yu, Guoquan Wang, Timothy J. Kearns, and Linqiang Yang
International Journal of Geophysics, 2014, Volume 2014, Page 1
[14]
Guoquan Wang, Jiangbo Yu, Timothy J. Kearns, and Jesse Ortega
Journal of Surveying Engineering, 2014, Volume 140, Number 3, Page 05014001
[15]
Guoquan Wang, Timothy J. Kearns, Jiangbo Yu, and Gabriel Saenz
Landslides, 2014, Volume 11, Number 1, Page 119

Comments (0)

Please log in or register to comment.
Log in