Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Sjöberg, Lars

1 Issue per year

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

A new Approach for GNSS Analysis in a Multi-GNSS and Multi-Signal Environment

Erik Schönemann / Matthias Becker / Tim Springer
Published Online: 2011-06-29 | DOI: https://doi.org/10.2478/v10156-010-0023-2

A new Approach for GNSS Analysis in a Multi-GNSS and Multi-Signal Environment

Over the coming years GPS and GLONASS will be modernised, whilst at the same time new systems like QZSS, Galileo, and Compass are launched. The modernisations of the existing and the deployment of new Global Naviagation Satellite Systems (GNSS) will make a whole range of new signals available to the users.

The anticipated improvements will strongly depend on our understanding and handling of the biases that will inevitably exist between the different systems and signals. Furthermore the extremely high stability of the future satellite clocks means, that any form of differencing observations to cancel out the satellite clock offsets, effectively leads to a very significant loss of information.

The fundamentally new aspect of our approach for GNSS analysis in a multi-GNSS and multi-signal environment is that it avoids the formation of differences as well as of linear combinations. Thus all available observations from all GNSS systems as observed by all the receivers in a network are incorporated in the parameter estimation. The fact that all observations are analysed without any pre-selection of observation types, needed for linear combinations or observation differences, leads to an enormous simplification of the processing.

Keywords: GNSS; Ionosphere; TEC; DCB; UPD; Multi frequency; Multi GNSS

  • Blewitt G., Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2000 km., Journal of Geophysical Research., 1989, 94, 10187-10203Google Scholar

  • Collins J.P., Lahaye F., Heroux P., Bisnath S., Precise point positioning with ambiguity resolution using the decoupled clock model., Proceedings of the Institute of Navigation International Technical Meeting ION GNSS (16-19 September 2008, Savannah, Georgia, USA), 1315-1322Google Scholar

  • De Jonge P.J., 1998, A processing strategy for the application of the GPS in networks. PhD thesis, TU Delft, NLGoogle Scholar

  • Defraigne P., Bruyninx C., On the link between GPS pseudorange noise and day-boundary discontinuities in geodetic time transfer solutions., GPS Solutions, 2007, 11(4), 239-249Google Scholar

  • Ge M., Gendt G., Rothacher M., Shi C., Liu J., Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. Journal of Geodesy, 2008, 82(7): 89-399, DOI:10.1007/s00190-007-0187-4.CrossrefWeb of ScienceGoogle Scholar

  • Griffiths J., Ray J.R., On the precision and accuracy of IGS orbits., Journal of Geodesy, 2009, 83(3-4), 277-287, ISSN 0949-7714. 10.1007/s00190-008-0237-6. http://www.springerlink.com/index/10.1007/s00190-008-0237-6

  • Gurtner W., Estey L., RINEX The Receiver Independent Exchange Format Version 3.00, 2007. http://www.aiub-download.unibe.ch/rinex/rinex300.pdf

  • Gurtner W., Estey L., RINEX The Receiver Independent Exchange Format Version 3.01. Technical report, UNAVCO, 2009.Google Scholar

  • Hegarty C., Powers E., Fonville B., Accounting For Timing Biases Between GPS, and GALILEO Signals Proceedings of the 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting (7-9 December 2004, Washington, D.C., USA), 307-318 http://www.mitre.org/work/tech.papers/tech.papers.05/05.0341/05.0341.pdf

  • Henkel P., Wen Z., Christoph G., Estimation of satellite and receiver biases on multiple Galileo frequencies with a Kalman filter. Proceedings of ION International Technical Meeting (2. January 2010, San Diego, USA) http://www.nav.ei.tum.de/joomla/documents/up/estimation.of.satellite.and.receiver.biases.on.multiple.frequencies.-.itm.2010.pdf

  • Hofmann-Wellenhof B., Lichtenegger H., Wasle E., GNSS - Global Navigation Satellite Systems. Springer, 2008. ISBN: 978-3-211-73012-6Google Scholar

  • Laurichesse D., Mercier F., Berthias J.P., Zero-difference integer ambiguity fixing on single frequency receivers., Proceedings of the 22nd International Technical Meeting of The Satellite Division of the Institute of Navigation (22-25 September 2009, Savannah, GA, USA), 2460-2469Google Scholar

  • Laurichesse D., Mercier F., Berthias J.-P., Broca P., Cerr L., Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and its Application to PPP and Satellite Precise Orbit Determination., 2009 Navigation, 56, 135-149Google Scholar

  • Mervat L., 1995, Ambiguity Resolution Techniques in Geodetic and Geodynamic Applications of the Global Positioning System. PhD thesis, Universität Bern, CHGoogle Scholar

  • Montenbruck O., Hauschild A., Erker S., Meurer M., Langley R., Steigenberger P., GPS L5, the real stuff. GPS World, 2010, 21(7), 13-14, ISSN 1048-5104. http://www.gpsworld.com/gnss-system/gps-modernization/news/gps-15-the-real-stuff-10086

  • Montenbruck O., Hauschild A., Steigenberger P., Langley R.B., Three's the challenge: A close look at gps svn62 triple-frequency signal combinations finds carrier-phase variations on the new l5. GPS World, 2010, 21(8), 8-19. ISSN 1048-5104. http://www.gpsworld.com/gnss-system/gps-modernization/news/threes-challenge-10246

  • Montenbruck O., Hauschild A., Hessels U., Characterization of GPS/GIOVE sensor stations in the CONGO network. GPS Solutions, August 2010c. ISSN 1080-5370.10.1007/s10291-010-0182-8.Google Scholar

  • Odijk D., 2002, Fast precise GPS positioning in the presence of ionospheric delays. PhD thesis, TU Delft, NLGoogle Scholar

  • Phelts R.E., Range Biases on Modernized GNSS Codes., Proceedings of European Navigation Conference GNSS/TimeNav (May 29 - June 1 2007, Geneva, Switzerland). http://waas.stanford.edu/~wwu/papers/gps/PDF/PheltsENC07.pdf

  • Schaer S., Differential Code Biases (DCB) in GNSS analysis., Presentation at IGS Workshop (2-6 June 2008, Miami Beach, Florida, USA). http://www.ngs.noaa.gov/IGSWorkshop2008/docs/Schaer.DCB.IGSWS2008.ppt

  • Schaer S., Dach R., Biases in GNSS analysis., Presented at IGS Workshop (28 June - 2 July 2010, Newcastle upon Tyne, UK). http://acc.igs.org/biases/signal-biases.igsws10.pdf

  • Schaer S., 1999, Mapping and Predicting the Earth's Ionosphere using the GPS. PhD thesis, Universität Bern, CH. http://ftp://ftp.unibe.ch/aiub/papers/ionodiss.ps.gz

  • Schönemann E., Dilssner F., Svehla D., Springer T., Becker M., Dow J., Zandbergen R., GIOVE - A and B - Precursors of a new era: Signal and clock quality and the achievable orbit accuracy., Presentation at the 2nd International Colloquium - Scientific and Fundamental Aspects of the Galileo Programme, (14 October 2009, University of Padova, Padua, IT)Google Scholar

  • Spits J. Warnant R., Total electron content monitoring using triple frequency GNSS data: A three-step approach., Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 1885-1893Google Scholar

  • Spits J., Warnant R., Total electron content monitoring using triple frequency GNSS: results with GIOVE-A/-B data., Advances in Space Research, 2011, 47, 296-303 ISSN 02731177, DOI: 10.1016/j.asr.2010.08.027.CrossrefGoogle Scholar

  • Waller P., Gonzalez F., Hahn J., Binda S., Piriz R., Hidalgo I. et al., In-Orbit Performance Assessment of Giove Clocks. Proceedings of 40th Annual Precise Time and Time Interval (PTTI) Meeting (1-4 December 2008, Reston, Virginia, USA), 69-82. http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA503434

  • Yunck T.P., Coping with the atmosphere and ionosphere in precise satellite and ground positioning. In: A. Valance-Jones, Environmental Effects on Spacecraft Trajectories and Positioning, Geophysical Monograph, 73, American Geophysical Union, Washington, DC, USA.Google Scholar

  • Zumberge J.F., Watkins M.M., Webb F.H., 1997, Characteristics and Applications of Precise GPS Clock Solutions Every 30 Seconds. Technical report, Jet Propulsion Laboratory, California Institute of Technology. http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/22369/1/97-0852.pdf

About the article


Published Online: 2011-06-29

Published in Print: 2011-09-01


Citation Information: Journal of Geodetic Science, ISSN (Online) 2081-9943, ISSN (Print) 2081-9919, DOI: https://doi.org/10.2478/v10156-010-0023-2.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Shodai Kato, Mitsunori Kitamura, Taro Suzuki, and Yoshiharu Amano
Journal of Robotics and Mechatronics, 2016, Volume 28, Number 1, Page 31
[2]
Yanming Feng, Yongchao Wang, Xiaopeng Gong, and Shengfeng Gu
Navigation, 2017, Volume 64, Number 1, Page 139
[3]
Rui Tu, Rui Zhang, Cuixian Lu, Pengfei Zhang, Jinhai Liu, and Xiaochun Lu
Sensors, 2017, Volume 17, Number 3, Page 507
[4]
J. Tegedor and O. Øvstedal
Survey Review, 2014, Volume 46, Number 337, Page 288
[5]
Dennis Odijk, Baocheng Zhang, Amir Khodabandeh, Robert Odolinski, and Peter J. G. Teunissen
Journal of Geodesy, 2016, Volume 90, Number 1, Page 15

Comments (0)

Please log in or register to comment.
Log in