Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

1 Issue per year

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Application of Molodensky's Method for Precise Determination of Geoid in Iran

Makan Abdollahzadeh
  • Division of Geodesy and Geoinformatics, Royal Institute of Technology, Stockholm, Sweden
  • Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mehdi Alamdari
  • Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-06-29 | DOI: https://doi.org/10.2478/v10156-011-0004-0

Application of Molodensky's Method for Precise Determination of Geoid in Iran

Determination of the geoid with a high accuracy is a challenging task among geodesists. Its precise determination is usually carried out by combining a global geopotential model with terrestrial gravity anomalies measured in the region of interest along with some topographic information. In this paper, Molodensky's approach is used for precise determination of height anomaly. To do this, optimum combination of global geopotential models with the validated terrestrial surface gravity anomalies and some deterministic modification schemes are investigated. Special attention is paid on the strict modelling of the geoidal height and height anomaly difference. The accuracy of the determined geoid is tested on the 513 points of Iranian height network the geoidal height of which are determined by the GPS observations.

Keywords: Molodensky; Geoidal height and height anomaly; Iran

  • Andersen B., Knudsen P., Berry P., 2010, The DNSC08GRA global marine gravity field from double retracked satellite altimetry, J. Geod., 84, 191-99.Google Scholar

  • Ellmann A., Vaníček P., 2007, UNP application of Stokes-Helmert's approach to geoid computation, J. Geodyn., 43, 200-213.Google Scholar

  • Featherstone W.E., Evans J.D., Olliver J.G., 1998, A Meisslmodified Vaníček and Kleusberg kernel to reduce the truncation error in gravimetric geoid computations. J. Geod., 72, 154-160.Google Scholar

  • Forsberg R., 1998, The use of spectral techniques in gravity field modelling: Trends and perspectives. Phys. Chem. Earth, 23, 31-39.Google Scholar

  • Flury J., Rummel R., 2009, On the geoid-quasigeoid separation in mountain areas, J. Geod., 83, 829-847.Web of ScienceGoogle Scholar

  • Förste C., et al., 2008, A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation, Geophysical Research Abstracts, A-03426, Vol. 10, EGU General Assembly 2008.Google Scholar

  • Grafarend E., Ardalan A.A., Sideris M.G., 1999, The spheroidal fixed-free two-boundary-value problem for geoid determination (the spheroidal Bruns transformation). J. of Geod., 73, 513-533.Google Scholar

  • Hamesh M., Zomorrodian H., 1992, Iranian gravimetric geoid determination-second step, NCC J. Surveying, 6, 52-63.Google Scholar

  • Heiskanen W.A., Moritz H., 1967, Physical geodesy, Freeman, San Francisco, 364 pp.Google Scholar

  • Huang J., Vaníček P., Pagiatakis S., Brink W., 2001, Effect of topographical mass density variation on gravity and geoid in the Canadian Rocky Mountains. J. Geod., 74, 805-815.Google Scholar

  • Huang J., Véronneau M., 2005, Applications of downward-continuation in gravimetric geoid modeling: case studies in Western Canada, J. Geod 79, 135-145.Google Scholar

  • Jäggi A., Beutler G., Meyer U., Prange L., Dach R., Mervart L., 2009, AIUB-GRACE02S-Status of GRACE Gravity Field Recovery using the Celestial Mechanics Approach, presented at the IAG Scientific Assembly 2009, August 31-September 4 2009, Buenos Aires, Argentina.Google Scholar

  • Kiamehr R., 2006, A strategy for determining the regional geoid by combining limited ground data with satellite-based global geopotential and topographical models: a case study of Iran. J. Geod., 79, 602-612.Google Scholar

  • Kiamehr R., Sjöberg L.E., 2005a, The qualities of Iranian gravimetric geoid models versus recent gravity field missions. Stud. Geophys. Geod., 49, 289-304.CrossrefGoogle Scholar

  • Kiamehr R., Sjöberg L.E., 2005b, Effect of the SRTM global DEM on the determination of a high-resolution geoid model: a case study in Iran, J. Geod., 79, 540-551.Google Scholar

  • Kotsakis C., Sideris M.G., 1999, On the adjustment of combined GPS_levelling/geoid networks. J. Geod., 73, 412-421.Google Scholar

  • Li Y.C., Sideris G., Schwarz K.P., 1995, A numerical investigation on height anomaly Prediction in mountain areas, Bulletin Géodésique, 69,143-156, 1995.Google Scholar

  • Martinec Z., 1996, Stability investigations of a discrete downward continuation problem for geoid determination in the Canadian Rocky Mountains. J. Geod., 70, 805-828.Google Scholar

  • Martinec Z., 1998, Boundary-Problems for Gravimetric Determination of a Precise Geoid, Springer Verlag Berlin Heidelberg.Google Scholar

  • Molodensky M.S., Eremeev V.F., Yurkina M.I., 1962, Methods for study of the external gravitational field and figure of the Earth. Translated from Russian by the Israel program for scientific translations, Office of Technical Services Department of Commerce, Washington, D.C.Google Scholar

  • Moritz H., 1980, Advanced Physical Geodesy, Herbert Wichmann Verlag.Google Scholar

  • Mayer-Gürr T., Kurtenbach E., Eicker A., 2010, ITG-Grace2010: the new GRACE gravity field release computed in Bonn, Geophysical Research Abstracts, A-03426, Vol. 12, EGU2010-2446, EGU General Assembly 2010.Google Scholar

  • Najafi M., 2004, Determination of Precise geoid for Iran based on Stokes-Helmert Scheme. Report 2003, National Cartographic Center of Iran (NCC), TOTAK Project, Iran.Google Scholar

  • Novák P., Vaniček P., Véronneau M., Holmes S.A., Featherstone W.E., 2001, On the accuracy of modified Stokes's integration in high-frequency gravimetric geoid determination. J. Geod., 74, 644-654.Google Scholar

  • Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K., 2008, An Earth gravitational model to degree 2160: EGM2008, Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13-18.Google Scholar

  • Rodriguez E., Morris C.S., Belz J.E., Chapin E.C., Martin J.M., Daffer W., Hensley S., 2005, An Assessment of the SRTM Topographic Products. Technical Report JPL D-31639, Jet Propulsion Laboratory, Pasadena, California.Google Scholar

  • Safari A., Ardalan A. A., Grafarend, E.W., 2005, A new ellipsoidal gravimetric, satellite altimetry, astronomic boundary value problem; case study: geoid of Iran. J. Geodyn., 39, 545-568.Google Scholar

  • Sideris M.G., 1990, Rigorous gravimetric terrain modelling using Molodensky's operator, Manuscr. Geod. 15:97-106.Google Scholar

  • Sideris M.G., Schwarz K.P., 1987, Improvement of medium and short wavelength features of geopotential solutions by local gravity data, Boll. Geod. Sci. Affini, Vol. XLVI, 207-221.Google Scholar

  • Sjöberg L.E., 1984, Least squares modification of Stokes' and Vening Meinesz' formulas by accounting for truncation and potential coefficient errors, Manuscr. Geod., 9, 209-229.Google Scholar

  • Sjöberg L.E., 1995, On quasigeoid to geoid separation, Manuscr. Geod, 20, 182-192.Google Scholar

  • Sjöberg L.E., 2003a, A computational scheme to model the geoid by the modified Stokes formula without gravity reductions. J. Geod., 74, 255-268.Google Scholar

  • Sjöberg L.E., 2003b, A general model of modifying Stokes' formula and its least squares solution. J. Geod., 77, 459-464.Google Scholar

  • Sjöberg L.E. 2003c, A solution to the downward continuation effect on the geoid determined by Stokes' formula. J Geod, 77, 94-100.Google Scholar

  • Sjöberg L.E., 2005, A discussion on the approximations made in the practical implementation of the remove-compute-restore technique in regional geoid modeling, J. Geod., 78, 645-653.Google Scholar

  • Sjöberg L.E., 2006, A refined conversion from normal height to orthometric height, Stud. Geophys. Geod., 50, 595-606.CrossrefGoogle Scholar

  • Stokes G.G., 1849, On the variation of gravity on the surface of the Earth. Trans Camb Phil Soc 8: 672-695.Google Scholar

  • Tapley B., Ries J.,Bettadpur S., Chambers D., Cheng M., Condi F., Poole S. 2007, The GGM03 Mean Earth Gravity Model from GRACE, Eos Trans. AGU 88(52), Fall Meet. Suppl., Abstract G42A-03.Google Scholar

  • Tenzer R., Novák P., Moore P., Kuhn N., Vaníček P., 2006, Explicit formula for the geoid-quasigeoid separation, Stud. Geophys. Geod., 50, 607-618.CrossrefGoogle Scholar

  • Tscherning C.C., 1991, The use of optimal estimation for gross-error detection in databases of spatially correlated data. BGI, Bulletin d' Information 68, 79-89.Google Scholar

  • Tscherning C.C., Forsberg R., 1987, Geoid determination in the Nordic countries from gravity and height data., Boll. Geod. Sci. Aff., 46, 21-43.Google Scholar

  • Vaníček P., Kleusberg A., 1987, The Canadian geoid-Stokesian approach. Manuscr. Geod, 12, 86-98.Google Scholar

  • Vaníček P., Sjöberg L.E., 1991, Reformulation of Stokes's theory for higher than second-degree reference field and modification of integration kernels. J. Geophysical Research-Solid Earth, 96, 6529-6539.Google Scholar

  • Vaníček P., Najafi M., Martinec Z., Harrie L., Sjöberg L.E., 1995, Higher degree reference field in the generalized Stokes-Helmert scheme for geoid computation. J. Geod., 70, 176-182Google Scholar

  • Vaníček P., Sun W., Ong P., Martinec Z., Najafi M., Vajda P. and TerHorst B., 1996, Downward continuation of Helmert's gravity anomaly. J. Geod., 71, 21-34.Google Scholar

  • Vaníček P., Featherstone W.E., 1998, Performance of three types of Stokes's kernel in the combined solution for the geoid, J. Geod., 72, 684-697.Google Scholar

  • Vaníček P., Tenzer R., Sjöberg L.E., Martinec Z., Featherstone W.E., 2004, New views of the spherical Bouguer gravity anomaly. Geophys. J. Int., 159, 460-472.Google Scholar

  • Weber G., Zomorrodian H., 1988, Regional geopotential model improvement for the regional Iranian geoid determination. Bulletin Géodésique, 62, 125-141.Google Scholar

  • Zhou Q., Liu X., 2004, Analysis of errors of derived slope and aspect related to DEM data properties, Computers & Geosciences, 30, 369-378.Google Scholar

About the article


Published Online: 2011-06-29

Published in Print: 2011-09-01


Citation Information: Journal of Geodetic Science, Volume 1, Issue 3, Pages 259–270, ISSN (Online) 2081-9943, ISSN (Print) 2081-9919, DOI: https://doi.org/10.2478/v10156-011-0004-0.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in