Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
See all formats and pricing
More options …

Interdecadal oscillations in Atmospheric Angular Momentum variations

R. Abarca-del-Rio / D. Gambis / D. Salstein
Published Online: 2012-01-24 | DOI: https://doi.org/10.2478/v10156-011-0025-8

Interdecadal oscillations in Atmospheric Angular Momentum variations

Global Atmospheric Angular Momentum (AAM) is an intrinsic index for describing processes that affect the atmospheric circulation on time scales ranging from intraseasonal to secular. It is associated with length-of-day (LOD) variability through conservation of global angular momentum in planet Earth and thus is of considerable importance for quantifying how the Earth acts as a system. The availability of lengthy AAM time series computed from the recent 20th Century atmospheric reanalyses (1870-2008), complemented by the NCAR-NCEP reanalysis in the overlapping period of 1948-2008 allows the investigation of the role of decadal and interdecadal cycles as well as the recent overall trend in AAM. Thus, we extend to the entire 20th century (and prior, back to 1870) results concerning decadal time scales and a secular positive trend detected over recent decades by different authors. In addition, we also note that AAM has features of interdecadal time scales that modulate the lower frequency variability. These interdecadal time signals oscillate with periods of about 30-50 years, and we found an indication of an 80-90 year period. Short term signals interact with the long-term (secular) trend. Particularly over the years 1950-1985 the global positive trend in AAM appears to result from a conjunction of constructive positive slopes from all lower frequency signals (interdecadal short-term trends and the long-term positive secular trend). Since the mid 1980s, however, the interdecadal oscillation short-term trend contribution decreases, as does the total signal in global AAM. These oscillations appear as two interdecadal modes originating within the Pacific (associated principally with the Pacific Decadal Oscillation and also ENSO) from which they propagate poleward, with differing characteristics in each hemisphere.

Keywords: Length of day; global Atmospheric Angular Momentum; XX century atmospheric reanalyses; decadal and interdecadal variability; pacific decadal oscillation; ENSO

  • Abarca del Rio R., 1999, The influence of global warming in Earth rotation speed. Ann. Geophys. 17, pp. 806-811CrossrefGoogle Scholar

  • Abarca del Rio R., Gambis D., Salstein D. A., 2000, Interannual signals in length of day and atmospheric angular momentum, Ann. Geophys., 18, pp. 347-364Google Scholar

  • Abarca del Rio, R., Gambis D., Salstein D. A., Nelson P., Dai A., 2003, Solar activity and earth rotation variability, Journal of Geodynamics. 36, pp. 423-443CrossrefGoogle Scholar

  • Abarca-del-Rio R., Mestre O. 2006, Decadal to secular time scales variability in temperature measurements over France, Geophys. Res. Lett. 33, L13705CrossrefGoogle Scholar

  • Abarca-del-Rio R., Salstein D. A., 2011, Atmospheric angular momentum from the 20th Century Reanalysis Project, Geophysical Research Abstracts. 13, EGU2011-13912Google Scholar

  • Andronova N. G., Schlesinger M. E., 2000, Causes of global temperature changes during the 19th and 20th centuries, Geophys. Res. Lett. 27, pp. 2137-2140CrossrefGoogle Scholar

  • Aoyama Y., Naito I., 2000, Wind contributions to the Earth's angular momentum budgets in seasonal variation, J. Geophys. Res., 105, pp. 12417-12431CrossrefGoogle Scholar

  • Bihrat O., Mehmet N., 2003, The Power of Statistical Tests for Trend Detection, Power. 27, pp. 247-251Google Scholar

  • Chen G., Shao B., Han Y., Ma J., Chapron B., 2010, Modality of semiannual to multidecadal oscillations in global sea surface temperature variability, J. Geophys. Res. 115, C03005CrossrefGoogle Scholar

  • Compo G. P., Whitaker J. S., Sardeshmukh P. D., 2006, Feasibility of a 100-year reanalysis using only surface pressure data, Bull. Am. Meteorol. Soc. 87, pp. 175-190CrossrefGoogle Scholar

  • Compo G. P., Sardeshmukh P. D., 2009, Oceanic influences on recent continental warming. Climate Dynamics, 32, pp. 333-342Google Scholar

  • Compo G. P. et al., 2011, The Twentieth Century Reanalysis Project. Quarterly J. Roy. Meteorol. Soc. 137, pp. 1-28Google Scholar

  • Craigmile P. F., Percival D. B., 2002, Wavelet-based trend detection and estimation, Encyclopedia of Environmetrics 4, pp. 2334-2338, edited by A. H. El-Shaarawi and W. W. Piegorsch (Hoboken, N. J., John Wiley)Google Scholar

  • de Viron, O., V. Dehant, H. Goosse, and M. Crucifix, 2001, Effect of Global warming on the length-of-day Geophysical Research LettersGoogle Scholar

  • de Viron O., Salstein D., Bizouard C., Fernandez L., 2004, Low-frequency excitation of length of day and polar motion by the atmosphere, J. Geophys. Res. 109, B03408CrossrefGoogle Scholar

  • Dickey J., Marcus S., Hide R., 1992, Global propagation of interannual fluctuations in atmospheric angular momentum. Nature. 357, pp. 484-488Google Scholar

  • Dickey J. O., Marcus S. L. DeViron O., 2003, Coherent interannual and decadal variations in the atmosphere-ocean system, Geophysical Research Letters. 30(11), 1573CrossrefGoogle Scholar

  • Egger J., Weickmann K., Hoinka K.-P. 2007, Angular momentum in the global atmospheric circulation, Rev. Geophys. 45, RG4007Google Scholar

  • Enfield D. B., Mestas-Nuñez A. M., 1999, Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns, J. Climate. 12, pp. 2719-2733CrossrefGoogle Scholar

  • Eubanks T. M., 1993, Interactions between the atmosphere, ocean and crust, Possible oceanic signal in earth rotation, Advances in Space Research. 13(11), pp. 291-300Google Scholar

  • Flandrin P., Goncalves P., 2004, Empirical mode decompositions as a data-driven wavelet-like expansions, Int. J. Wavelets Multires. Inf. Process. 2(4), pp. 477-496Google Scholar

  • Gray S. T., Graumlich L. J., Betancourt J.L, Pederson G. T., 2004, A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A. D. Geophys. Res. Lett., 31, L12205CrossrefGoogle Scholar

  • Grinsted A., Moore J., Jevrejeva S., 2004, Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlinear Processes in Geophysics. 11, pp. 561-566 Sref-ID:1607-7946Google Scholar

  • Gross, R. S., Fukumori I., Menemenlis D. 2005, Atmospheric and oceanic excitation of decadal-scale Earth orientation variations, J. Geophys. Res. 110, B09405CrossrefGoogle Scholar

  • Gross R. S., 2007, Earth rotation variations-long period, in Physical Geodesy, edited by T. A. Herring Treatise on Geophysics, 3, pp. 239-294 (Elsevier, Oxford)Google Scholar

  • Huang, H.-P., Weickmann K. M., Hsu C. J., 2001, Trend in Atmospheric Angular Momentum in a Transient Climate Change Simulation with Greenhouse Gas and Aerosol Forcing, J. Climate, 14, pp. 1525-1534CrossrefGoogle Scholar

  • Huang, N. D., Shen Z., Long S. R., Wu M. C., Shih H. H., Zheng Q., Yen N.-C, Tung C. C., Liu H. H., 1998, The empirical modal decomposition and the Hilbert spectrum for non linear and non-stationary time series analysis, Proc. R. Soc. London, Ser. A, 454, pp. 903-995Google Scholar

  • Huang, N. E., and Z. Wu, 2008, A review on Hilbert-Huang transform: Method and its applications to geophysical studies, Rev. Geophys., 46, RG2006CrossrefGoogle Scholar

  • Jadin E., 1995, Total ozone and stratospheric angular momentum anomalies Meteorology and Hydrology. 7, pp. 48-55Google Scholar

  • Jadin E. A., Kondratyev K.YA., Bekoryukov V. I., Vargin P. N., 2005, Influence of atmospheric circulation variations on the ozone layer, International Journal of Remote Sensing. 26(16), pp. 3467-3478Google Scholar

  • Kalnay E. et al., 1996, The NMC/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc. 77, pp. 437-471Google Scholar

  • Kistler R. at al., 2001, The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation. Bull. Amer. Meteor. Soc. 82, pp. 247-268CrossrefGoogle Scholar

  • Knight, J. R.; Folland C. K.,. Scaife A.A, 2006, Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 33: L17706CrossrefGoogle Scholar

  • Lambeck K., Cazenave A, 1977, The Earth's variable rate of rotation: a discussion of some meteorological and oceanic causes and consequences, Phil. Trans. R. Soc. Lond., A284, pp. 495-506Google Scholar

  • Lee S., Son S. W., Grise K., Feldstein, S. B., 2008, A mechanism for the poleward propagation of zonal mean flow anomalies, Journal of Atmospheric Sciences. 64 (3), pp. 849-868Google Scholar

  • Libiseller C., Grimvall A., 2002, Performance of partial Mann-Kendall tests for trend detection in the presence of covariates, Environmetrics. 13 (1), pp. 71-84CrossrefGoogle Scholar

  • Marshall J., Plumb R. A., 2007, Atmosphere, ocean and climate dynamics: an introductory text, International Geophysics, vol 93, Academic Press, p. 344Google Scholar

  • MacDonald G. M., Case R. A., 2005, Variations in the Pacific Decadal Oscillation over the past millennium, Geophys. Res. Lett., 32, L08703CrossrefGoogle Scholar

  • Murguía J. S., Rosu H. C., 2011, Discrete Wavelet Analyses for Time Series, Discrete Wavelet Transforms - Theory and Application., Juuso T. Olkkonen (Ed.), ISBN: 978-953-307-185-5, InTech, Available from: http://www.intechopen.com/articles/show/title/discrete-wavelet-analyses-for-time-series

  • Li J., Xie S-P, Edward R. C., Gang H., D'Arrigo R., Liu F., Ma J., Zheng X-T., 2011, Interdecadal modulation of El Niño amplitude during the past millennium, NatureGoogle Scholar

  • Peixoto J. P., Oort A. H., 1992, Physics of Climate, American Institute of Physics, p. 520Google Scholar

  • Rosen, R. D., Salstein, D. A., 1983, Variations in atmospheric angular momentum on global and regional scales and the length of day, J. Geophys. Res. 88, pp. 5451-5470CrossrefGoogle Scholar

  • Rosen, R. D., Salstein, D. A., 1985, Contribution of Stratospheric Winds to Annual and Semiannual Fluctuations in Atmospheric Angular Momentum and the Length of Day, J. Geophys. Res., 90(D5), pp. 8033-8041CrossrefGoogle Scholar

  • Rosen R. D., Salstein D. A., 2000, Multidecadal signals in the interannual variability of atmospheric angular momentum, Clim. Dyn. 6, pp. 693-700Google Scholar

  • Salstein D. A., Quinn K., Abarca-del-Rio R., 2011, Impact of atmosphere/ocean models' climate scenarios on angular momentum and related EOP parameters, Geophysical Research Abstracts, 13, EGU2011-5270-1Google Scholar

  • Schlesinger M., Ramankutty N., 1994, An oscillation in the global climate system of 65-70 years, Nature, 367, pp. 723-726Google Scholar

  • Shabalova M. V., Weber S. L., 1999, Patterns of temperature variability on multidecadal to centennial timescales, J. Geophys. Res., 104, pp. 31023-31042CrossrefGoogle Scholar

  • Torrence C., Compo G. P., 1998, A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc. 79, pp. 61-78CrossrefGoogle Scholar

  • Yang Z., Yang L., 2010, A new definition of the intrinsic mode function, Engineering and Technology. 60, pp. 822-825Google Scholar

  • Winkelnkemper T., Seitz F., Min S.-K., Hense A., 2008, Simulation of Historic and Future Atmospheric Angular Momentum Effects on Length-of-day Variations with GCMs, Sideris, ed. Observing our Changing Earth, 133, pp. 447-454Google Scholar

  • Wu Z., Huang N. E., Long S. R., Peng C-K., 2007, On the trend, detrending, and variability of nonlinear and nonstationary time series, Proc Natl Acad Sci. 104, pp. 14889-14894CrossrefGoogle Scholar

  • Zhou Y. H., Chen J., Salstein D. A., 2008, Tropospheric and stratospheric wind contributions to Earth's variable rotation from NCEP/NCAR reanalyses (2000-2005), Geophysical Journal International. 174, pp. 453-463Google Scholar

About the article

Published Online: 2012-01-24

Published in Print: 2012-01-01

Citation Information: Journal of Geodetic Science, Volume 2, Issue 1, Pages 42–52, ISSN (Online) 2081-9943, ISSN (Print) 2081-9919, DOI: https://doi.org/10.2478/v10156-011-0025-8.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alexander Ruzmaikin and Alexey Byalko
American Journal of Climate Change, 2015, Volume 04, Number 03, Page 181
Houk Paek and Huei-Ping Huang
Journal of Geophysical Research: Atmospheres, 2012, Volume 117, Number D20

Comments (0)

Please log in or register to comment.
Log in