Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Validation of GOCE global gravity field models using terrestrial gravity data in Norway

M. Šprlák
  • Institute for Mathematical Sciences and Technology, Norwegian University of Environmental and Life Sciences, P.O. Box 5003, 1432 Ås, Norway
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. Gerlach
  • Institute for Mathematical Sciences and Technology, Norwegian University of Environmental and Life Sciences, P.O. Box 5003, 1432 Ås, Norway
  • Commission for Geodesy and Glaciology, Bavarian Academy of Sciences and Humanities, Alfons-Goppel Straÿe 11, 80539 Munich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ B. Pettersen
  • Institute for Mathematical Sciences and Technology, Norwegian University of Environmental and Life Sciences, P.O. Box 5003, 1432 Ås, Norway
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-05-24 | DOI: https://doi.org/10.2478/v10156-011-0030-y

Validation of GOCE global gravity field models using terrestrial gravity data in Norway

The GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite gravity gradiometry mission maps the Earth's gravity field. Harmonic analysis of GOCE observations provides a global gravity field model (GGFM). Three theoretical strategies, namely the direct, the space-wise and the time-wise approach, have been proposed for GOCE harmonic analysis. Based on these three methods, several GGFMs have been provided to the user community by ESA. Thereby different releases are derived from different periods of GOCE observations and some of the models are based on combinations with other sources of gravity field information. Due to the multitude of GOCE GGFMs, validation against independent data is a crucial task for the quality description of the different models.

In this study, GOCE GGFMs from three releases are validated with respect to terrestrial free-air gravity anomalies in Norway. The spectral enhancement method is applied to avoid spectral inconsistency between the terrestrial and the GOCE free-air gravity anomalies.

The results indicate that the time-wise approach is a reliable harmonic analysis procedure in all three releases of GOCE models. The space-wise approach, available in two releases, provides similar results as the time-wise approach. The direct approach seems to be highly affected by a-priori information.

Keywords: Gravimetry; Satellite Gravity Gradiometry; Validation; Global Potential Model

  • Berry P. A. M., Smith R. G. and Benveniste J., 2010, ACE2: The new global digital elevation model, In: Mertikas S. P. (Ed.), Gravity, Geoid and Earth Observation, IAG Symposia, Vol. 135, 23-27 June 2008, Chania, Greece, 231-238.Google Scholar

  • Bock H., Jäggi A., Meyer U., Visser P., van den IJsell J., van Helleputte T., Heinze M. and Hugentobler U., 2011, GPS-derived orbits for the GOCE satellite, J Geod., 85, 807-818.Google Scholar

  • Bouman J., Rispens S., Gruber T., Koop R., Schrama E., Visser P., Tscherning C. C. and Veicherts M., 2009, Preprocessing of gravity gradients at the GOCE high-level processing facility, J Geod., 83, 659-678Web of ScienceGoogle Scholar

  • Bouman J., Fiorot S., Fuchs M., Gruber T., Schrama E., Tscherning C. C., Veicherts M., Visser P., 2011, GOCE gravitational gradients along the orbit, J Geod., 85, 791-805.Google Scholar

  • Bruinsma S. L., Marty J. C., Balmino G., Biancale R., Foerste C., Abrikosov O. and Neumayer H., 2010, GOCE gravity field recovery by means of the direct numerical method, In: Proceedings of the ESA Living Planet Symposium, 28 June - 2 July 2010, Bergen, Norway.Google Scholar

  • Claessens S. J., 2006, Solution to ellipsoidal boundary value problems for gravity field modelling, PhD Thesis, Department of Spatial Sciences, Curtin University of Technology, Perth, AustraliaGoogle Scholar

  • EGG-C, 2010, GOCE L2 product data handbook, Issue 4, Revision 2, GO-MA-HPF-GS-0110, European GOCE Gravity Consortium.Google Scholar

  • ESA, 1999, Gravity field and steady-state ocean circulation mission, Reports for Mission Selection, the Four Candidate Earth Explorer Core Missions, ESA SP-1233(1).Google Scholar

  • ESA, 2010, GOCE L1B products user handbook, Issue 1, Revision 1, GOCE-GSEG-EOPG-TN-06-0137.Google Scholar

  • Forsberg R., 1984, A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling, report No. 355, Department of Geodetic Science and Surveying, Ohio State University, Columbus, USA.Google Scholar

  • Foerste C., Flechtner F., Schmidt R., Stubenvoll R., Rothacher M., Kusche J., Neumayer H., Biancale R., Lemoine J. M., Barthelmes F., Bruinsma S., Koenig R. and Meyer U., 2008, EIGEN-GL05C - a new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation, Geophys. Res. Abs., 10, EGU2008-A-03426.Google Scholar

  • Foerste C., Bruinsma S., Shako R., Marty J. C., Flechtner F., Abrikosov O., Dahle C., Lemoine J. M., Neumayer K. H., Biancale R., Barthelmes F., Koenig R. and Balmino G., 2011, EIGEN-6 - a new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse, Geophys. Res. Abs., 13, EGU2011-3242-2.Google Scholar

  • Frommknecht B., Lamarre D., Meloni M., Bigazzi A. and Floberghagen R., 2011, GOCE level 1b data processing, J Geod., 85, 759-775.Google Scholar

  • Gellein J., Olesen O., Reitan M., and Sæther P. O., 1993, Brukerbeskrivelse - database og prosessering av gravimetriske data, Intern NGU Rapport Nr. 93.019, Norges Geologiske Undersøkelse, Trondheim, Norge.Google Scholar

  • Goiginger H., Hoeck E., Rieser D., Mayer-Guerr T., Maier A., Krauss S., Pail R., Fecher T., Gruber T., Brockmann J. M., Krasbutter I., Schuh W. D., Jäggi A., Prange L., Hausleitner W., Baur O., Kusche J., 2011, The combined satellite-only global gravity field model, Presented at the General Assembly of the European Geosciences Union, April 4-8, Vienna, Austria.Google Scholar

  • Gruber T., Visser P. N. A. M., Ackermann C. and Hosse M., 2011, Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons, J Geod., 85, 845-860.Google Scholar

  • Heck B. and Seitz K., 2007, A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling, J Geod., 81, 121-136.Google Scholar

  • Heiskanen W. A. and Moritz H., 1967, Physical geodesy, W. H. Freeman and Company, San Francisco, USA.Google Scholar

  • Hipkin R. G., 2004, Ellipsoidal geoid computation, J Geod., 78, 167-179.Google Scholar

  • Hirt C., 2010, Prediction of vertical defections from high-degree spherical harmonic synthesis and residual terrain model data, J Geod., 84, 179-190.Google Scholar

  • Hirt C., Featherstone W. E. and Marti U., 2010, Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data, J Geod., 84, 557-567.Web of ScienceGoogle Scholar

  • Hirt C., Gruber T. and Featherstone W. E., 2011, Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical defections and EGM2008 quasigeoid heights, J Geod., 85, 723-740.Google Scholar

  • Holmes S. A. and Featherstone W. E., 2002, A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalized associated Legendre functions, J Geod., 76, 279-299Google Scholar

  • Ihde J., Wilmes H., Mueller J., Denker H., Voigt C., Hosse M., 2010, Validation of satellite gravity field models by regional terrestrial data sets, In: F. Flechtner, T. Gruber, A. Guentner, M. Mandea, M. Rothacher, T. Schoene, J. Wickert (Eds.), System Earth via Geodetic-Geophysical Space Techniques, Springer-Verlag Berlin Heidelberg, 277-296.Google Scholar

  • Janák J., Pašteka R., Zahorec P., Loviška Z., 2006, Terrain correction in extremely disturbed terrain, Contr. Geophys. Geod., 36, 41-52.Google Scholar

  • Janák J. and Sprlák M., 2006, A new software for gravity field modelling, Geod. Cart. Hor., 52, 1-8 (in Slovak).Google Scholar

  • Janák J., Pitonák M., 2011, Comparison and testing of GOCE global gravity models in central Europe, J Geod. Sci., 1, 333-347.Google Scholar

  • Koop R., Visser P. and Tscherning C. C., 2001, Aspects of GOCE calibration, In: Proceedings of the International GOCE User Workshop, WPP-188, ESA/ESTEC, Noordwijk, The Nederlands, 51-56.Google Scholar

  • Lemoine F. G., Kenyon S. C., Factor J. K., Trimmer R. G., Pavlis N. K., Chin D. S., Cox C. M., Klosko S. M., Luthcke S. B., Torrence M. H., Wang Y. M., Williamson R. G., Pavlis E. C., Rapp R. H. and Olson T. R., 1998, The development of the joint NASA GSFC and NIMA geopotential model EGM96, NASA Technical Report 1998-206861, NASA/GSFC, Greenbelt, USA.Google Scholar

  • Martinec Z., 1998, Boundary-value problems for gravimetric determination of a precise geoid, Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar

  • Migliaccio F., Reguzzoni M., Sansó F., Tscherning C. C. and Veicherts M., 2010, GOCE data analysis: the space-wise approach and the first space-wise gravity field model, In: Proceedings of the ESA Living Planet Symposium, 28 June - 2 July 2010, Bergen, Norway.Google Scholar

  • Moritz H., 2000, Geodetic reference system 1980, J Geod., 74, 128-133Google Scholar

  • Pail R., Goiginger H., Mayrhofer R., Schuh W. D., Brockmann J. M., Krasbutter I., Hoeck E., Fecher T., 2010a, GOCE gravity field model derived from orbit and gradiometry data applying the time-wise method, In: Proceedings of the ESA Living Planet Symposium, 28 June - 2 July 2010, Bergen, Norway.Google Scholar

  • Pail R., Goiginger H., Schuh W. D., Hoeck E., Brockmann J. M., Fecher T., Gruber T., Mayer-Guerr T., Kusche J., Jäggi A., Rieser D., 2010b, Combined satellite gravity field model GOCO01S derived from GOCE and GRACE, Geophys. Res. Lett., 37, L20314, DOI:10.1029/2010GL044906.Web of ScienceCrossrefGoogle Scholar

  • Pail R., Bruinsma S., Migliaccio F., Foerste C., Goiginger H., Schuh W. D., Hoeck E., Reguzzoni M., Brockmann J. M., Abrikosov O., Veicherts M., Fecher T., Mayrhofer R., Krasbutter I., Sansó F. and Tscherning C. C., 2011, First GOCE gravity field models derived by three different approaches, J Geod., 85, 819-843.Google Scholar

  • Pavlis N. K., Factor J. K., Holmes S. A., 2007, Terrain-related gravimetric quantities computed for the next EGM, In: Gravity Field of the Earth, Proceedings of the 1st International Sympsium of the International Gravity Field Service, Harita Dergisi, Special Issue 18, Istanbul, Turkey, 318-323.Google Scholar

  • Pavlis N. K., Holmes S. A., Kenyon S. C. and Factor J. K., 2008, An Earth gravitational model to degree 2160: EGM2008, Presented at the General Assembly of the European Geosciences Union, 13-18 April 2008, Vienna, Austria.Google Scholar

  • Rummel R., 2010, GOCE: gravitational gradiometry in a satellite, In: Freeden W., Nashed Z. M., Sonar T., (Eds.), Handbook of Geomathematics. Springer-Verlag, Berlin, Germany, 93-103.Google Scholar

  • Rummel R., Sansó F., van Gelderen M., Koop R., Schrama E., Brovelli M., Migliaccio F. and Sacerdote F., 1993, Spherical harmonic analysis of satellite gradiometry, Publications on Geodesy, New Series, No. 39, Netherlands Geodetic Commission, Delft, The Netherlands.Google Scholar

  • Sprlák M., Gerlach C., Omang O. C. D. and Pettersen B. R., 2011, Comparison of GOCE derived satellite global gravity models with EGM2008, the OCTAS geoid and terrestrial gravity data: case study for Norway, In: Proceedings of the 4th International GOCE User Workshop, SP-696, ESA/ESTEC, Noordwijk, The Nederlands.Google Scholar

  • Tscherning C. C. and Arabelos D. N., 2011, Gravity anomaly and gradient recovery from GOCE gradient data using LSC and comparison with known ground data, In: Proceedings of the 4th International GOCE User Workshop, SP-696, ESA/ESTEC, Noordwijk, The Nederlands.Google Scholar

  • Voigt C., Ruelke A., Denker H., Ihde J. and Liebsch G., 2010, Validation of GOCE products by terrestrial sets in Germany, In: Observation of the System Earth from Space, Geotechnologien, No. 17, Potsdam, Germany, 106-111.Google Scholar

  • Voigt C. and Denker H., 2011, Validation of GOCE gravity field models by astrogeodetic vertical defections in Germany, In: Proceedings of the 4th International GOCE User Workshop, SP-696, ESA/ESTEC, Noordwijk, The Nederlands.Google Scholar

  • Wenzel H. G., 1985, Hochauösende Kugelfunktionsmodelle für das Gravitationspotential der Erde, Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover, Nr. 137, Geodätisches Institut der Universität Hannover.Google Scholar

  • Wenzel H. G., 1998, Ultra high degree geopotential models GPM98A and GPM98B to degree 1800, In: Proceedings of Joint Meeting International Gravity Commission and International Geoid Commission, March 10-14, Budapest, Hungary.Google Scholar

  • Rep 98:4, Finnish Geodetic Institute, Helsinki, 71-80.Google Scholar

  • Wenzel H. G., 2005, Global models of the gravity field of high and ultra-high resolution. In: International School for the Determination and Use of the Geoid, January 31 - February 5, Budapest, Hungary.Google Scholar

About the article


Published Online: 2012-05-24

Published in Print: 2012-01-01


Citation Information: Journal of Geodetic Science, Volume 2, Issue 2, Pages 134–143, ISSN (Online) 2081-9943, ISSN (Print) 2081-9919, DOI: https://doi.org/10.2478/v10156-011-0030-y.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Salissou Ibrahim Yahaya and Driss El Azzab
Geodesy and cartography, 2019, Volume 45, Number 3, Page 116
[3]
Georgios S. Vergos, Bihter Erol, Dimitrios A. Natsiopoulos, Vassilios N. Grigoriadis, Mustafa Serkan Işık, and Ilias N. Tziavos
Acta Geodaetica et Geophysica, 2017
[4]
Mohamed El-Ashquer, Basem Elsaka, and Gamal El-Fiky
International Journal of Geosciences, 2016, Volume 07, Number 11, Page 1323
[5]
Abdulaziz Alothman, Walyeldeen Godah, and Basem Elsaka
Arabian Journal of Geosciences, 2016, Volume 9, Number 5
[6]
Walyeldeen Godah and Jan Krynski
International Journal of Applied Earth Observation and Geoinformation, 2015, Volume 35, Page 128
[7]
Walyeldeen Godah
Acta Geodynamica et Geomaterialia, 2013, Page 379

Comments (0)

Please log in or register to comment.
Log in