Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
See all formats and pricing
More options …

Validation of recent GOCE/GRACE geopotential models over Khartoum state - Sudan

A. Abdalla / H. Fashir / A. Ali
  • Survey Department, Ministry of Planning and Physical Development, P.O Box 7265, Khartoum, Sudan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D. Fairhead
Published Online: 2012-07-19 | DOI: https://doi.org/10.2478/v10156-011-0035-6

Validation of recent GOCE/GRACE geopotential models over Khartoum state - Sudan

This paper evaluates a number of latest releases of GOCE/GRACE global geopotential models (GGMs) using the GPS-levelling geometric geoid heights, terrestrial gravity data and existing local gravimetric models. We investigate each global model at every 5 degree of spherical harmonics. Our analysis shows that the satellite-only models derived by space-wise and time-wise approaches (SPW_R1, SPW_R2 TIM_R1 and TIM_R2), GOCO01S together with EGM08 (combined model) are very distinct and consistent to the local data, which guarantees one of them to be selected as the best of candidate models and then to be utilized in our further geoid studies. One of Satellite-only models will be employed for acquiring the long wavelength geoid component which is one of major steps in the geoid determination. EGM08 will be used to compensate and restore the missing gravity data points in the un-surveyed parts within the target area. We expect further improvements in geoid studies in Sudan due to the improved medium wavelength part of the gravity field from GOCE mission.

Keywords: elevation; geoid heights; GPS-levelling data; global geopotential models; terrestrial gravity data

  • Abdalla A., 2009, Determination of a gravimetric geoid model of Sudan using the KTH method. Master's Thesis in Geodesy. Royal Institute of Technology (KTH), Stockholm, Sweden.Google Scholar

  • Abdalla A. and Fairhead D., 2011, A new gravimetric geoid model for Sudan using the KTH method. J African Earth Sci., 60, 4, 213-221.Web of ScienceGoogle Scholar

  • Adam M. O., 1967, A Geodetic Datum for the Sudan. (Master's Thesis), Cornell University, USA.Google Scholar

  • Ali A., 2012, Evaluation of vertical and horizontal control for Khartoum State., Master's Thesis., University of Khartoum- Sudan.Google Scholar

  • Bruinsma S. L., Marty J. C., Balmino G., Biancale R., Foerste C., Abrikosov O. and Neumayer H., 2010, GOCE Gravity Field Recovery by Means of the Direct Numerical Method. In presented at the ESA Living Planet Symposium. ESA, 1999, Gravity Field and Steady-State Ocean Circulation Mission., ESA SP-1233 (1).Google Scholar

  • Fairhead J. D., 1988, African Gravity Project 1986-1988 compiled by University of Leeds, UK.Google Scholar

  • Fashir H. H., 1991, The gravimetric geoid of Sudan, J Geodyn., 14, 1-4, 19-36.Google Scholar

  • Fashir H. H., Abdalla K. A., 1991, Doppler geoid in Africa. Surv. Rev. 31, 241, 175-180.Google Scholar

  • Förste C., Schmidt R., Stubenvoll R., Flechtner F., Meyer U., Stubenvoll R., Rothacher M., König R., Neumayer H., Biancale R., Lemoine J-M., Bruinsma S., Loyer S., Barthelmes and Neumayer F., 2006, A mean global gravity field model from the combination of satellite mission and altimetry/gravimetry surface data: EIGEN-GL04C. Geophys. Res. Abs., 8.Google Scholar

  • Goiginger H., Hoeck E., Rieser D., Mayer-Guerr T., Maier A., Krauss S., Pail R., Fecher T., Gruber T., Brockmann JM., Krasbutter I., Schuh W. D., Jaeggi A., Prange L., Hausleitner W., Baur O. and Kusche J., 2011, The combined satellite-only global gravity field model GOCO02S. System Earth via Geodetic-Geophysical Space Techniques.Google Scholar

  • Heiskanen W. and Moritz H., 1967, Physical Geodesy, San Francisco: W. H. Freeman.Google Scholar

  • Janák J. and Sprlák M., 2006, A New Software for Gravity Field Modelling Using Spherical Harmonics. Geodetický a kartografickýbzor, 52, pp. 1-8 (in slovak)Google Scholar

  • Kiamehr R. and Sjöberg L. E., 2005, Comparison of the qualities of recent global and local gravimetric geoid models in Iran, Stud. Geophys. Geod., 49, 3, 289-304.CrossrefGoogle Scholar

  • Marsh J. G., Lerch F. J., Putuney B.H, Christodouliddis D. C., Felsentreger T. L., Sanches B. V., Smith D. E., Klosko S. M., Martin T. V., Pavlis E., C., Robbin S. M., Wiliamson R. G., Colombo O. L., Chandler N. L., Rachlin K. E., Patel G. B., Phati S. and Chinn D. S., 1987, An improved model of the of the Earth's gravitational field, GEM- T1, NASA Technical Memorandum, 4019.Google Scholar

  • Mayer-Gürr T., Kurtenbach E., Eicker A. and Kusche J., 2010, The ITG-Grace2010 gravity field model. http://www.igg.unibonn.de/apmg/index.php?id=itg-grace2010

  • Migliaccio F., Reguzzoni M., Gatti A., Sansò F. and Herceg M., 2011, A GOCE-only global gravity field model by the spacewise approach. In the 4th International GOCE User Workshop 31 March - 1 April 2010. Munich.Google Scholar

  • Pail R., Goiginger H., Mayrhofer R., Schuh W., Brockmann J. M., Krasbutter I., Hoeck E. and Fecher T., 2010a, GOCE gravity field model derived from orbit and gradiometry data applying the time-wise method., presented at the ESA Living Planet Symposium 2010, Bergen, June 27 - July 2, Bergen, Norway.Google Scholar

  • Pail R., Goiginger H., Mayrhofer R., Schuh W-D., Brockmann J. M., Krasbutter I., Höck E. and Fecher T., 2010b, Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys. Res. Lett., 37, 5.Web of ScienceGoogle Scholar

  • Pail R., Bruinsma S., Migliaccio F., Foerste C., Goiginger H., Schuh W.-D, Hoeck E, Reguzzoni M., Brockmann J.M, Abrikosov O., Veicherts M., Fecher T., Mayrhofer R., Krasbutter I., Sanso F., Tscherning C. C., 2011, First GOCE gravity field models derived by three different approaches; Journal of Geodesy, DOI: 10.1007/s00190-011-0467-x.CrossrefWeb of ScienceGoogle Scholar

  • Pavlis N. K., Holmes S. A., Kenyon S. C. and Factor J. K., 2008, An Earth Gravitational Model to degree 2160: EGM2008. In Presented at the 2008 General Assembly of the European Geosciences Union. pp. April 13-18, 2008.Google Scholar

  • Reigber C., Bock R., Förste C., Grunwaldt L., Jakowski N., Lühr H., Schwintzer P. and Tilgner C., 1996, CHAMP PhaseB - Executive Summary. GFZ Scientific Technical Report STR96/13, GFZ Potsdam.Google Scholar

  • Reigber C., R. Schmidt F. Flechtner R., König U., Meyer KH., Neumayer P., Schwintzer and Zhu S. Y., 2005, An Earth gravity field model complete to degree and order 150 from GRACE: EI-GEN-GRACE02S, J Geodyn., 39, 1-10.Google Scholar

  • Salih A. B., 1983, The shape of the geoid in the Sudan. Aust. J. Geod. Photo. Surv. 39, 27-38.Google Scholar

  • Salih A. B., 1985, The shape of the geoid by astrogeodetic and Doppler methods in the Sudan. Aust. J. Geod. Photo. Surv., 43, 71-83.Google Scholar

  • Salih A. B., Fashir H. H. and Abdalla K. A., 1990, Doppler geoid in Sudan, Surv. Rev. 30, 237, 319-322.Google Scholar

  • Sjöberg L. E., 1984, Least squares modification of Stokes and Vening-Meinesz formulas by accounting for errors of truncation, potential coefficients and gravity data. The Dept. of Geodesy Report No. 27, University of Uppsala.Google Scholar

  • Sjöberg L. E., 1991, Refined least squares modification of Stokes's formula, Manus. Geod., 16, 367-375.Google Scholar

  • Sjöberg L. E., 1997, The total terrain effect in gravimetric geoid determinations. Boll. Geod. Sci. Aff. 56, 2, 209-222.Google Scholar

  • Sjöberg L. E., 2000, Topographic effects by the Stokes-Helmert method of geoid and quasi geoid determinations, J Geod., 74, 2, 255-268.Google Scholar

  • Sjöberg L. E., 2003a, A computational scheme to model eoid by the modified Stokes formula without gravity reductions, J Geod., 74, 255-268.Google Scholar

  • Sjöberg L. E., 2003b, A general model of modifying Stokes' formula and its least squares solution, J Geod., 77, 459-464.Google Scholar

  • Sjöberg L. E., 2004, A spherical harmonic representation of the ellipsoidal correction to the modified Stokes formula. J Geod., 78, 3, 1394-1432.Google Scholar

  • Tapley B. D., Watkins M. M., Ries J. C., Davis G. W., Eanes R. J., Poole S. R., Rim H. J., Schutz B. E., Shum C. K., Nerem R. S., Lerch F. J., Marshall J. A., Klosko S. M., Pavlis N. K. and Williamson R. G., 1996, The Joint Gravity Model 3. J Geophys. Res., 101, B12, 049.Google Scholar

  • Vaníek P., Kleusberg A., Chang R., Fashir H., Christou N., Hofman N., Kling T. and Arsenauit T., 1986, The Canadian geoid. Department of Surveying Engineering, Tech, Ref., No.129, UNB, Fredricton, Canada.Google Scholar

  • Wessel P., and Smith W. H. F., 1995, New version of the Generic Mapping Tools released. Eos, Trans. Amer. Geophys. Union, 76,329.Google Scholar

About the article

Published Online: 2012-07-19

Published in Print: 2012-01-01

Citation Information: Journal of Geodetic Science, Volume 2, Issue 2, Pages 88–97, ISSN (Online) 2081-9943, ISSN (Print) 2081-9919, DOI: https://doi.org/10.2478/v10156-011-0035-6.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Salissou Ibrahim Yahaya, El Hassan El Brirchi, and Driss El Azzab
Geodesy and Cartography, 2017, Volume 43, Number 4, Page 147
Mohamed El-Ashquer, Basem Elsaka, and Gamal El-Fiky
International Journal of Geosciences, 2016, Volume 07, Number 11, Page 1323
Abdulaziz Alothman, Walyeldeen Godah, and Basem Elsaka
Arabian Journal of Geosciences, 2016, Volume 9, Number 5
Ahmed Abdalla, Saad Mogren, and Randolph Enkin
Canadian Journal of Earth Sciences, 2015, Volume 52, Number 10, Page 823
Walyeldeen Godah and Jan Krynski
International Journal of Applied Earth Observation and Geoinformation, 2015, Volume 35, Page 128

Comments (0)

Please log in or register to comment.
Log in