Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Sjöberg, Lars

1 Issue per year

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Solutions to the ellipsoidal Clairaut constant and the inverse geodetic problem by numerical integration

L. E. Sjöberg
  • Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), SE 10044, Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-12-14 | DOI: https://doi.org/10.2478/v10156-011-0037-4

Abstract

We derive computational formulas for determining the Clairaut constant, i.e. the cosine of the maximum latitude of the geodesic arc, from two given points on the oblate ellipsoid of revolution. In all cases the Clairaut constant is unique. The inverse geodetic problem on the ellipsoid is to determine the geodesic arc between and the azimuths of the arc at the given points. We present the solution for the fixed Clairaut constant. If the given points are not(nearly) antipodal, each azimuth and location of the geodesic is unique, while for the fixed points in the ”antipodal region”, roughly within 36”.2 from the antipode, there are two geodesics mirrored in the equator and with complementary azimuths at each point. In the special case with the given points located at the poles of the ellipsoid, all meridians are geodesics. The special role played by the Clairaut constant and the numerical integration make this method different from others available in the literature.

Keywords: clairaut constant; geodesic; inverse geodetic problem

  • Bessel F. W., 1826, Über die Berechnung der geographischen Längen und Breiten aus geodätischen Vermessungen, Astron. Nachr., 4, 86, 241-254.Google Scholar

  • Helmert F. R., 1880, Die matematischen und physicalischen Theorien der höheren Geodäsie, Part 1. B G Teubner, Leipzig.Google Scholar

  • Moritz H., 1959, Eine direkte Lösung der zweiten Hauptaufgabe auf dem Rotationsellipsoid fuer beliebige Entfernungen, ZfV, 84, 453-457.Google Scholar

  • Moritz H., 2000, Geodetic Reference System 1980, J Geod., 74, 128-140.Google Scholar

  • Rainsford H. F., 1955, Long geodesics on the ellipsoid, Bull. Geod., 37, 12-22.Google Scholar

  • Schmidt H., 2006a, Berechnung geodätischer Linien aufdem Rotationsellipsoid im Grenzbereich diametraler Endpunkten, ZfV, 124, 121-128.Google Scholar

  • Schmidt H., 2006b, Note on Lars E. Sjöberg: New solutions to the direct and indirect geodetic problems on the ellipsoid, ZfV, 1/2006, 35-39.Google Scholar

  • Sjöberg L. E., 2006a, New solutions to the direct and indirect geodetic problems on the ellipsoid, ZfV, 131, 35-39.Google Scholar

  • Sjöberg L. E., 2006b, Comment to H. Schmidt’s remarks on Sjöberg, ZfV 1/2006, 35-39, ZfV, 131, 155.Google Scholar

  • Sjöberg L. E., 2007, Precise determination of the Clairaut constant in ellipsoidal geodesy, Surv. Rev., 39, 81-86.Web of ScienceGoogle Scholar

  • Vincenty T., 1975, Direct and Inverse solutions of geodesics on the ellipsoid with applications of nested equations, Surv. Rev., XXII, 176, 88-93.Google Scholar

  • Google Scholar

About the article

Published Online: 2012-12-14

Published in Print: 2012-11-01


Citation Information: Journal of Geodetic Science, ISSN (Print) 2081-9943, DOI: https://doi.org/10.2478/v10156-011-0037-4.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in