Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Sjöberg, Lars

1 Issue per year

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Determination of sea surface height from moving ships with dynamic corrections

J. Reinking / A. Härting / L. Bastos
  • Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Portugal
  • Departamento de Geociências Ambiente e Ordenamento do Território, Faculdade de Ciências, Universidade do Porto, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-12-14 | DOI: https://doi.org/10.2478/v10156-011-0038-3

Abstract

With the growing global efforts to estimate the influence of civilization on the climate change it would be desirable to survey sea surface heights (SSH) not only by remote sensing techniques like satellite altimetry or (GNSS) Global Navigation Satellite System reflectometry but also by direct and in-situ measurements in the open ocean. In recent years different groups attempted to determine SSH by ship-based GNSS observations. Due to recent advances in kinematic GNSS (PPP) Precise Point Positioning analysis it is already possible to derive GNSS antenna heights with a quality of a few centimeters. Therefore it is foreseeable that this technique will be used more intensively in the future, with obvious advantages in sea positioning. For the determination of actual SSH from GNSS-derived antenna heights aboard seagoing vessels some essential hydrostatic and hydrodynamic corrections must be considered in addition to ocean dynamics and related corrections. Systematic influences of ship dynamics were intensively analyzed and sophisticated techniques were developed at the Jade University during the last decades to precisely estimate mandatory corrections. In this paper we will describe the required analyses and demonstrate their application by presenting a case study from an experiment on a cruise vessel carried out in March 2011 in the Atlantic Ocean.

Keywords : Case study; GNSS; Sea surface height; Ship-based; Ship dynamics

  • Barras C., 2004, Thirty-two years of Research into Ship Squat, Elsflether Schriften zur Seeverkehrs- und Hafenwirtschaft, 3, 1-25.Google Scholar

  • Barthelmes F., 2009, Definition of functionals of the geopotential and their calculation from spherical harmonic models: theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM), Scientific Technical Report 09/02, GFZ, 32, DOI: 10.2312/GFZ.b103- 09026.CrossrefGoogle Scholar

  • Bonnefond P., Exertier P., Laurain O., Ménard Y., Orsoni A., Jan G. and Jeansou E., 2003, Absolute calibration of Jason-1 and TOPEX/Poseidon altimeters in Corsica, Mar. Geod., 26, 261-284.Google Scholar

  • Bosch W. and Savcenko R., 2010, On estimating the dynamic ocean topography, In: Mertikas S.P. (Ed.): Gravity, Geoid and Earth Observation, Springer IAG Symposia, 135, 263-269.Google Scholar

  • Bouin M.-N., Ballu V., Calmant S., Boré J.-M., Folcher E.and Ammann J., 2009, A kinematic GPS methodology for sea surface mapping, Vanuatu, J Geod., 83, 1203-1217.Google Scholar

  • Chang X.-W., Yang X. and Zhou T., 2005, MLAMBDA: a modified LAMBDA method for integer least-squares estimation, J Geod., 79, 552-565.Google Scholar

  • Cheng Y. and Andersen O. B., 2010, Improvement in global ocean tide model in shallow water regions, Poster, SV.1-68 45, OSTST, Lisbon, Oct.18-22, improvement in global ocean tide model in shallow water regions, accessed 05 December 2011.Google Scholar

  • Dach R., Brockmann E., Schaer S., Beutler G., Meindl M. Prange L., Bock H., Jággi A. and Ostini L., 2009, GNSS processing at CODE: status report, J Geod., 83, 353-365.Google Scholar

  • Eriksen T., Skauen A. N., Narheim B., Helleren O., Olsen O. and Olsen R. B., 2010, Tracking ship traffic with space-based AIS: experience gained in first months of operations, proceedings 2nd International Waterside Security Conference, ISBN 978-1-4244-8894-0, DOI:10.1109/WSSC.2010.5730241.Google Scholar

  • Foster J. H., Carter G. S. and Merrifield M. A., 2009, Shipbased measurements of sea surface topography, Geophys. Res. Lett., 36, L11605, DOI:10.1029/2009GL038324.CrossrefGoogle Scholar

  • Fórste C., Bruinsma S., Shako R., Marty J.-C., Flechtner F., Abrikosov O., Dahle C., Lemoine J.- M., Neumayer K. H., Biancale R., Barthelmes F., Kónig R. and Balmino G., 2011, EIGEN-6 - A new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse, Geophys. Res. Abstr.,13, EGU2011-3242-2.Google Scholar

  • Franke R., Hagen H. and Nielson G. M., 1994, Least squares surface approximation to scattered data using multiquadratic functions, Adv. Comput. Math., 2, 81-99.Google Scholar

  • Geng J., Teferle F. N., Meng X. and Dodson A. H., 2010, Kinematic precise point positioning at remote marine platforms, GPS Solut., 14, 343-350.Web of ScienceCrossrefGoogle Scholar

  • Hárting A. and Reinking J., 2002, SHIPS: A new method for efficient full-scale ship squat determination, proc. PIANC congress Sydney 2002, 1805-1813.Google Scholar

  • Hárting A., Berndt T. and Reinking J., 2007, Squat related effects on small surveying craft, proc. Hydrogr. Tech. Aware. Seminar: Cape Town 2007 / Hydrographic Society of South Africa.Google Scholar

  • Hárting A., Reinking J., Ellmer W., 2004 Ship Squat in Hydrography- a study of the surveying vessel Deneb. Int.Hydrogr. Rev., Vol. 5 No. 3. Hugentobler U., Dach R., Fridez P. and Meindl M. (eds), 2006, Bernese GPS software version 5.0 Draft. Astronomical Institute University of Berne, pp 574.Google Scholar

  • Lagerloef G., Colomb F. R., Le Vine D., Wentz F., Yueh S., Ruf C., Lilly J., Gunn J., Chao Y., deCharon A., Feldman G. and Swift C., 2008, The Aquarius/SAC-D Mission: Designed to Meet the Salinity Remote-Sensing Challenge. Oceanography 21-1, pp. 68-81.CrossrefGoogle Scholar

  • Parks T. W. and Burrus C. S., 1987, Digital filter design, John Wiley and Sons, New York.Google Scholar

  • Petit G. and Luzum B. (eds.), 2010, IERS Conventions, IERS Technical Note No. 36. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodesie, ISBN: 3-89888-989-6.Google Scholar

  • Picot N., Case K., Desai S. and Vincent P., 2003, Aviso and PoDaac User Handbook - IGDR and GDR Jason-1 Product, SMM-MU-M5-OP-13184-CN (AVISO), JPL D-21352 (PODAAC)Google Scholar

  • Pineau-Guillou L. and Dorst L. L., 2011, Creation of vertical reference surfaces at sea using altimetry and GPS, Ann. Hydrograph., 8, 777,10, <http://www.shom.fr/fr_page/fr_prod_annales/777/777-ZTL.pdf> , accessed 24 April 2012Google Scholar

  • Plag H.-P., Rizos C., Rothacher M. and Neiland R., 2010, The global geodetic observing system (GGOS): detecting the fingerprints of global change in geodetic quantities, In: Chuvieco, E., Li J., Yang X. (Eds): Advances in Earth Observation of Global Change edited by E. Chuvieco, J. Li and X. Yang, X., Springer Netherlands, 1st Edition, 125-144.Google Scholar

  • Reinking J. and Hárting A., 2002, Heave determination by stand-alone GPS and/or inertial sensors, Proc. Hydro 2002, Kiel, 452-459.Google Scholar

  • Reinking J. and Hárting A., 2007, Geodetic contributions to ship dynamics, PositionIT online November/December 2007, EE Publishers, Muldersdrift, South Africa, 18-23.Google Scholar

  • Reinking J., Laupichler A. and Hárting A., 2009, On the dynamic trim of container ships, Elsflether Schriften zur Seeverkehrs- und Hafenwirtschaft, 4, 88-99.Google Scholar

  • Reinking J., 2010, Marine Geodesy, In: Science of Geodesy, Xu, G. (Ed.), Springer, Berlin, ISBN: 3642117406, 275-299.Google Scholar

  • Semmling A. M., Beyerle G., Stosius R., Dick G., Wickert J., Fabra F., Cardellach E., Ribó S., Rius A., Helm A., Yudanov S. B. and d’Addio S., 2011, Detection of Arctic Ocean tides using interferometric GNSS-R signals, Geophys. Res. Lett., 38, L04103.Web of ScienceGoogle Scholar

  • Schóne T., Forberg M., Galas R. and Reigber C., 2002, GPS buoys for lifetime RA drift monitoring. In: AGU Fall Meeting, EOS Trans., AGU, 83, 47, Fall Meet. Suppl., Abs. 0S52A-0189.Google Scholar

  • Shum C., Yi Y., Cheng K., Kuo C., Braun A., Calmant S. and Chambers D., 2003, Calibration of Jason-1 Altimeter over Lake Erie, Mar. Geod., 26, 335-354.Google Scholar

  • Teferle F. N., Orliac E. J. and Bingley R. M., 2007, An assessment of Bernese GPS software precise point positioning using IGS final products for global site velocities, GPS Solut., 11, 205-213.CrossrefWeb of ScienceGoogle Scholar

  • Van Dorn W., 1993, Oceanography and Seamanship, Cornell Maritime Press; 2nd edition.Google Scholar

  • Watson C., Coleman R., White N., Church J. and Govind R., 2003, Absolute calibration of TOPEX/Poseidon and Jason-1 using GPS buoys in bass strait, Austral. Mar. Geod., 26, 285-304.Web of ScienceCrossrefGoogle Scholar

  • Wigley W. C. 5., 1926, Ship wave resistance, a comparison of mathematical theory with experimental Results, Trans. lnst. Nav. Arch., 68, 124-137.Google Scholar

  • Google Scholar

About the article

Published Online: 2012-12-14

Published in Print: 2012-11-01


Citation Information: Journal of Geodetic Science, ISSN (Print) 2081-9943, DOI: https://doi.org/10.2478/v10156-011-0038-3.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Iyan E. Mulia, Daisuke Inazu, Takuji Waseda, and Aditya Riadi Gusman
Journal of Geophysical Research: Oceans, 2017
[2]
Daisuke Inazu, Takuji Waseda, Toshiyuki Hibiya, and Yusaku Ohta
Geoscience Letters, 2016, Volume 3, Number 1
[3]
Ole Roggenbuck, Jörg Reinking, and Alexander Härting
Marine Geodesy, 2014, Volume 37, Number 1, Page 77

Comments (0)

Please log in or register to comment.
Log in