Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
See all formats and pricing
More options …

Height unification using GOCE

R. Rummel
  • Corresponding author
  • Institute of Astronomical and Physical Geodesy (IAPG), Technische Universität München, 80 290 München
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-01-29 | DOI: https://doi.org/10.2478/v10156-011-0047-2


With the gravity field and steady-state ocean circulation explorer (GOCE) (preferably combined with the gravity field and climate experiment (GRACE)) a new generation of geoid models will become available for use in height determination. These models will be globally consistent, accurate (<3 cm) and with a spatial resolution up to degree and order 200, when expressed in terms of a spherical harmonic expansion. GOCE is a mission of the European Space Agency (ESA). It is the first satellite equipped with a gravitational gradiometer, in the case of GOCE it measures the gradient components Vxx , Vyy, Vzzand Vxz. The GOCE gravitational sensor system comprises also a geodetic global positioning system (GPS)-receiver, three star sensors and ion-thrusters for drag compensation in flight direction. GOCE was launched in March 2009 and will fly till the end of 2013. Several gravity models have been derived from its data, their maximum degree is typically between 240 and 250. In summer 2012 a first re-processing of all level-1b data took place. One of the science objectives of GOCE is the unification of height systems. The existing height offsets among the datum zones can be determined by least-squares adjustment. This requires several precise geodetic reference points available in each height datum zone, physical heights from spirit levelling (plus gravimetry), the GOCE geoid and, in addition, short wavelength geoid refinement from terrestrial gravity anomalies. GOCE allows for important simplifications of the functional and stochastic part of the adjustment model. The future trend will be the direct determination of physical heights (orthometric as well as normal) from precise global navigation satellite system (GNSS)-positioning in combination with a next generation combined satellite-terrestrial high-resolution geoid model.

Keywords: GOCE; height; height system; height system unification

  • Bock H., Jäggi A., Meyer U., Visser P., van den Ijssel J., van Helleputte T., Heinze M. and Hugentobler U., 2011, GPSderived orbits for the GOCE satellite, J. Geod. 85, 807-818; DOI 10.1007/s00190-011-0484-9.CrossrefGoogle Scholar

  • Bruinsma, S., Marty J.-C., Balmino G., Förste Ch., Abrikosov O. and Neumayer K.-H., 2010, GOCE Gravity Field Recovery by Means of the Direct Numerical Method, Proceedings of the ESA Living Planet Symposium, 28 June - 2 July 2010, Bergen, Norway. earth.esa.int/GOCE.Google Scholar

  • Cartwright D. E. and Crease J., 1963, A Comparison of the Geodetic Reference Levels of England and France by Means of the Sea Surface, Proc. Royal Society London. Series A, Mathematical and Physical Sciences, 273, 1355, 558-580.Google Scholar

  • Colombo O. L., 1980, A World Vertical Network, OSU Report 296, Ohio University, Columbus.Google Scholar

  • ESA , 1999, Gravity Field and Steady-State Ocean Circulation Mission, Report for mission selection of the four candidate earth explorer core missions, ESA, Noordwijk.Google Scholar

  • Featherstone W.E. and Filmer M.S., 2012, The north-south tilt in the Australian Height Datum is explained by the ocean’s mean dynamic topography, J. Geophys. Res.,117:C08035; DOI:10.1029/2012JC007974.CrossrefWeb of ScienceGoogle Scholar

  • Fischer I., 1977, Mean sea level and the marine geoid - an analysis of concepts, Mar. Geod., 1, 37; DOI:10.1080/01490417709387950.CrossrefGoogle Scholar

  • Floberghagen R., Fehringer M., Lamarre D., Muzi D., Frommknecht B., Steiger C., Piñeiro J. and da Costa A., 2011, Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission, J.Web of ScienceGoogle Scholar

  • Geod. 85, 749-758; DOI 10.1007/s00190-011-0498-3 Frommknecht B., Lamarre D., Meloni M., Bigazzi A. and Floberghagen R., 2011, GOCE level 1b data processing, J.CrossrefGoogle Scholar

  • Geod. 85, 759-775; DOI 10.1007/s00190-011-0497-4 Gatti A., Reguzzoni M. and Venuti G., 2012, The height datum problem and the role of satellite gravity models, J.CrossrefGoogle Scholar

  • Geod. DOI 10.1007/s00190-012-0574-3 Gerlach C. and Rummel R., 2012, Global height system unification with GOCE: A simulation study on the indirect bias term in the GBVP approach, J. Geod. DOI 10.1007/s00190-012-0579-y Gerlach, C. and Fecher T., 2012, Approximations of the variance-covariance matrix of a GOCE global potential model for height system unification, J. Geod. Sci. 2, 4, 247-256.CrossrefGoogle Scholar

  • Gill A., 1982, Atmosphere-Ocean Dynamics, Academic Press Inc.Google Scholar

  • Heck B. and Rummel R., 1990, Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data, in: Sea Surface Topography and the Geoid, (eds. Sünkel H. & T. Baker), IAG-Symposia 104, Springer, New York.Google Scholar

  • Heiskanen W. A. and Moritz H., 1967, Physical Geodesy, W.H. Freeman & Company, San Francisco.Google Scholar

  • Khafid, 1998, On the unification of Indonesian local heights, DGK, Reihe C-488, Verlag der Bayerischen Akademie der Wissenschaften, München.Google Scholar

  • Marque J.-P., Christophe B., Liorzou F., Bodovillé G., Foulon B., Guérard J. and Lebat V., 2008, The ultra sensitive accelerometers of the ESA GOCE mission, International Astronautical Federation IAC-08, B1-3.Google Scholar

  • Mayer-Gürr T., Eicker A., Kurtenbach E. and Ilk K., 2010, ITG-GRACE: global static and temporal gravity field models from GRACE data, In: System Earth via Geodetic-Geophysical Space Techniques, (eds. Flechtner F.M., Gruber T., Güntner A., Mandea M., Rothacher M., Schöne T., Wickert J.), Springer Berlin, pp 159-168; DOI 10.1007/978-3-642-10228-8 13.CrossrefGoogle Scholar

  • Migliaccio F., Reguzzoni M., Sansò F., Tscherning C. and Veicherts M., 2010, GOCE Data Analysis: The Space-wise Approach and the First Space-wise Gravity Field Model, Proceedings of the ESA Living Planet Symposium, 28 June - 2 July 2010, Bergen, Norway. ESA SP-686. earth.esa.int/GOCE.Google Scholar

  • Pail R., Goiginger H., Mayrhofer R., Schuh W.-D., Brockmann J. M., Krasbutter I., Höck E. and Fecher T., 2010, GOCE Gravity Field Model Derived from Orbit and Gradiometry Data Applying the Time-wise Method, Proceedings of the ESA Living Planet Symposium, 28 June - 2 July 2010, Bergen, Norway, ESA SP-686. earth.esa.int/GOCE.Google Scholar

  • Pail, R., Goiginger H., Schuh W.-D., Höck E., Brockmann J. M., Fecher T., Gruber T., et al., 2010, Combined Satellite Gravity Field Model GOCO01S Derived from GOCE and GRACE, Geoph. Res. Lett. 37, L20314; doi:201010.1029/2010GL044906.Web of ScienceGoogle Scholar

  • Pail R., Bruinsma S., Migliaccio F., Förste Ch., Goiginger H., Schuh W.-D., Höck E., et al., 2011, First GOCE Gravity Field Models Derived by Three Different Approaches, J. Geod. 85, 819-843; DOI:10.1007/s00190-011-0467-x.CrossrefGoogle Scholar

  • Pavlis N.K., Holmes S.A., Kenyon S. and Factor J.K, 2012, The development and evaluation of the earth gravitational model 2008 (EGM2008), J. Geophys. Res. 117, B04406; DOI 10.1029/2011JB008916 Plag H.-P. and Pearlman M. (eds.), 2009, Global Geodetic Observing System, Springer, Heidelberg.CrossrefGoogle Scholar

  • Rapp R.H. and Balasubramania N., 1992, A conceptual formulation of a world height system, Dept. of Geodetic Science and Surveying 421, Ohio University, Columbus.Google Scholar

  • Rummel R. and Ilk K. H., 1995, Height datum connection - the ocean part, Allgemeine Vermessungsnachrichten, 8-9, 321-330.Google Scholar

  • Rummel R. and Teunissen P. J. G., 1988, Height Datum Definition, Height Datum Connection and the Role of the Geodetic Boundary Value Problem, Bull. Geod., 62, 477-498.Google Scholar

  • Sansò F. and Venuti G., 2002, The height datum/geodetic datum problem, Geophys. J. Int., 149, 768-775; DOI:10.1046/j.1365-246X.2002.01680.x.CrossrefGoogle Scholar

  • Sjöberg L., 2011, On the Definition and realization of a Global Vertical Datum, J. Geod. Sci. 1, 154-157; DOI:14.2478/v10156-010-0018-z Sturges W., 1967, Slope of Sea Level along the Pacific Coast of the United States, J. Geophys. Res., 72, 3627, DOI:10.1029/JZ072i014p03627.CrossrefGoogle Scholar

  • Sturges W., 1974, Sea Level Slope Along Continental Boundaries, J. Geophys. Res., 79, 825-830; DOI:10.1029/JC079i006p00825.CrossrefGoogle Scholar

  • Tenzer R., Vatrt V., Gan L., Abdalla A. and Dayoub N., 2011, Combined approach for the unification of leveling networks in New Zealand, J. Geod. Sci., 1, 4, 324-332; DOI:10.2478/v10156-011-0012-0.CrossrefGoogle Scholar

  • Torge W. and Müller J.,2012, Geodesy, 4th edition, De Gruyter, Berlin.Google Scholar

  • Woodworth P.L., Hughes C., Bingham R. and Gruber T., 2012, Towards worldwide height system unification using ocean information, J. Geod. Sci. 2, 4, 302-318.Google Scholar

  • Xu P.,1992, A quality investigation of global vertical datum connection, Geophys. J. Int., 110, 361-370, DOI:10.1111/j.1365-246X.1992.tb00880.x.CrossrefGoogle Scholar

  • Xu P. and Rummel R., 1991, A quality investigation of global vertical datum connection, Netherlands Geodetic Commission, new series 34, Delft.Google Scholar

  • Zhang L., Li F., Chen W. and Zhang C., 2008, Height datum uni- fication between Shenzhen and Hong Kong using the solution of the linearized fixed-gravimetric boundary value problem, J.Web of ScienceGoogle Scholar

  • Geod., 83, 411-417, DOI:10.1007/s00190-008-0234-9. CrossrefGoogle Scholar

About the article

Published Online: 2013-01-29

Published in Print: 2012-12-01

Citation Information: Journal of Geodetic Science, Volume 2, Issue 4, Pages 355–362, ISSN (Print) 2081-9943, DOI: https://doi.org/10.2478/v10156-011-0047-2.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ole Baltazar Andersen, Karina Nielsen, Per Knudsen, Chris W. Hughes, Rory Bingham, Luciana Fenoglio-Marc, Médéric Gravelle, Michael Kern, and Sara Padilla Polo
Marine Geodesy, 2018, Page 1
Jianbo Wang, Jinyun Guo, Xin Liu, Qiaoli Kong, Yi Shen, and Yu Sun
Acta Geodaetica et Geophysica, 2017, Volume 52, Number 3, Page 357
G. Lion, I. Panet, P. Wolf, C. Guerlin, S. Bize, and P. Delva
Journal of Geodesy, 2017, Volume 91, Number 6, Page 597
T. Fecher, R. Pail, and T. Gruber
Surveys in Geophysics, 2017, Volume 38, Number 3, Page 571
Vegard Ophaug, Kristian Breili, and Christian Gerlach
Journal of Geophysical Research: Oceans, 2015, Volume 120, Number 12, Page 7807
M. van der Meijde, R. Pail, R. Bingham, and R. Floberghagen
International Journal of Applied Earth Observation and Geoinformation, 2015, Volume 35, Page 4

Comments (0)

Please log in or register to comment.
Log in