Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Sjöberg, Lars

1 Issue per year

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Intercontinental height datum connection with GOCE and GPS-levelling data

T. Gruber
  • Corresponding author
  • Institut für Astronomische und Physikalische Geodäsie, Technische Universität München, Munich, 80333, Arcisstrasse 21, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. Gerlach
  • Kommission für Erdmessung und Glaziologie, Bayerische Akademie der Wissenschaften, Munich, 80539, Alfons-Goppel-Strasse 11, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Haagmans
  • The European Space Research and Technology Centre, European Space Agency, Noordwijk, 2200AG, Postbus 299, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-01-29 | DOI: https://doi.org/10.2478/v10156-012-0001-y

Abstract

In this study an attempt is made to establish height system datum connections based upon a gravity field and steady-state ocean circulation explorer (GOCE) gravity field model and a set of global positioning system (GPS) and levelling data. The procedure applied in principle is straightforward. First local geoid heights are obtained point wise from GPS and levelling data. Then the mean of these geoid heights is computed for regions nominally referring to the same height datum. Subsequently, these local mean geoid heights are compared with a mean global geoid from GOCE for the same region. This way one can identify an offset of the local to the global geoid per region. This procedure is applied to a number of regions distributed worldwide. Results show that the vertical datum offset estimates strongly depend on the nature of the omission error, i.e. the signal not represented in the GOCE model. For a smooth gravity field the commission error of GOCE, the quality of the GPS and levelling data and the averaging control the accuracy of the vertical datum offset estimates. In case the omission error does not cancel out in the mean value computation, because of a sub-optimal point distribution or a characteristic behaviour of the omitted part of the geoid signal, one needs to estimate a correction for the omission error from other sources. For areas with dense and high quality ground observations the EGM2008 global model is a good choice to estimate the omission error correction in theses cases. Relative intercontinental height datum offsets are estimated by applying this procedure between the United State of America (USA), Australia and Germany. These are compared to historical values provided in the literature and computed with the same procedure. The results obtained in this study agree on a level of 10 cm to the historical results. The changes mainly can be attributed to the new global geoid information from GOCE, rather than to the ellipsoidal heights or the levelled heights. These historical levelling data are still in use in many countries. This conclusion is supported by other results on the validation of the GOCE models.

Keywords: GOCE; GPS-levelling; Height systems; Vertical datum

  • Arabelos D. and Tscherning C. C., 2001, Improvements in height datum transfer expected from the GOCE mission. J. Geod. 75, 308-312, DOI:10.1007/s001900100187.CrossrefGoogle Scholar

  • Bruinsma S., Marty J. C., Balmino G., Förste C., Abrikosov O. and Neumayer K. H., 2010, GOCE Gravity Field Recovery by Means of the Direct Numerical Method, Proceedings of the ESA Living Planet Symposium, 28 June - 2 July 2010, Bergen, Norway, ESA SP-686, earth.esa.int/GOCE.Google Scholar

  • Drinkwater M., Haagmans R., Muzi D., Popescu A., Floberghagen R., Kern M. and Fehringer M., 2007, The GOCE Gravity Mission: ESA’s First Core Earth Explorer, ESA Special Publication SP-627.Google Scholar

  • Featherstone W. E. and Filmer M. S., 2012, The north-south tilt in the Australian Height Datum is explained by the ocean’s mean dynamic topography, J. Geophys. Res. - Oceans 117, C08035, DOI: 10.1029/2012JC007974 Gruber Th., Visser P. N. A. M., Ackermann C. and Hosse M., 2011, Validation of GOCE Gravity Field Models by Means of Orbit Residuals and Geoid Comparisons, J. Geod. 85, p.845-860. DOI:10.1007/s00190-011-0486-7.CrossrefGoogle Scholar

  • Heiskanen W. A. and Moritz H., 1967, Physical Geodesy, W.H.Freeman & Co Ltd.Google Scholar

  • Hirt C., Featherstone W. and Marti U., 2010, Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. J Geod. 84, 557-567. DOI:10.1007/s00190-010-0395-1 Ihde J. and Sacher M., 2002, EUREF Publication 11/I, Mittelungen Des Bundesamtes Für Kartographie Und Geodäsie, Frankfurt/Main 25.Google Scholar

  • Kenyeres A., Sacher M., Ihde J., Denker H. and Marti U., 2007, EUVN_ DA: Establishment of a European Continental GPS/levelling Network, Proceedings of the 1st International Symposium of the International Gravity Field Service, Istanbul 2006, Harita Dergisi, Special Issue, Nr. 18.Google Scholar

  • Kotsakis C. and Katsambalos K., 2010, Quality Analysis of Global Geopotential Models at 1542 GPS/levelling Bench marks Over the Hellenic Mainland, Surv. Rev. 42, (September 5): 327-344. DOI:10.1179/003962610X12747001420500.CrossrefWeb of ScienceGoogle Scholar

  • Migliaccio F., Reguzzoni M., Sansò F., Tscherning C. and Veicherts M., 2010, GOCE Data Analysis: The Space-wise Approach and the First Space-wise Gravity Field Model, Proceedings of the ESA Living Planet Symposium, 28 June - 2 July 2010, Bergen, Norway, ESA SP-686, earth.esa.int/GOCE.Google Scholar

  • Nerem R. S., Lerch F. J., Marshall J. A., Pavlis E. C., Putney B. H., Tapley B. D., Eanes R. J. et al., 1994, Gravity Model Development for TOPEX/POSEIDON: Joint Gravity Models 1 and 2, J. Geophys. Res. 99, 24421-24447. DOI:199410.1029/94JC01376.Google Scholar

  • Pail R., Goiginger H., Mayrhofer R., Schuh W. D., Brockmann J. M., Krasbutter I., Höck E. and Fecher T., 2010, GOCE Gravity Field Model Derived from Orbit and Gradiometry Data Applying the Time-wise Method, Proceedings of the ESA Living Planet Symposium, 28 June - 2 July 2010, Bergen, Norway, ESA SP-686, earth.esa.int/GOCE.Google Scholar

  • Pail R., Goiginger H., Schuh W. D., Höck E., Brockmann J. M., Fecher T., Gruber T. et al., 2010, Combined Satellite Gravity Field Model GOCO01S Derived from GOCE and GRACE, Geophys. Res. Lett. 37 (October 28): 5 PP. DOI:201010.1029/2010GL044906.Web of ScienceGoogle Scholar

  • Pail R., Bruinsma S., Migliaccio F., Förste C., Goiginger H., Schuh W.D., Höck E. et al., 2011, First GOCE Gravity Field Models Derived by Three Different Approaches, J. Geod. 85, 819-843. DOI:10.1007/s00190-011-0467-x.CrossrefGoogle Scholar

  • Pavlis N. K., Holmes S. A., Kenyon S. C. and Factor J. K., 2012, The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res. 117, DOI:201210.1029/2011JB008916.Google Scholar

  • Rapp R. H., 1997, Use of Potential Coefficient Models for Geoid Undulation Determinations Using a Spherical Harmonic Representation of the Height Anomaly/geoid Undulation Difference, J. Geod. 71, p. 282-289. DOI:10.1007/s001900050096.CrossrefGoogle Scholar

  • Rapp R. H., Wang Y. M. and Pavlis N., 1991, The Ohio State 1991 Geopotential and Sea Surface Topography Harmonic Coefficient Models, Report No. 410, Department of Geodetic Science and Surveying, The Ohio State University.Google Scholar

  • Rapp R. H., 1994, Separation Between Reference Surfaces of Selected Vertical Datums, J. Geod. 69, p. 26-31, DOI:10.1007/BF00807989.CrossrefGoogle Scholar

  • Tscherning C. and Rapp R. H., 1974, Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Defiections of the Vertical Implied by Anomaly Degree Variance Models, Report No. 208, Department of Geodetic Science and Surveying, The Ohio State University.Google Scholar

  • Wang Y. M., Saleh J., Li X. and Roman D. R., 2011, The US Gravimetric Geoid of 2009 (USGG2009): Model Development and Evaluation, J. Geod. 86, 165-180. DOI:10.1007/s00190-011-0506-7.CrossrefGoogle Scholar

  • Woodworth P. L., Hughes C., Bingham R. and Gruber T, 2012, Towards Worldwide Heigth System Unification using Ocean Information, J. Geod. Sci., 2, 4, 302-318.Google Scholar

About the article

Published Online: 2013-01-29

Published in Print: 2012-12-01


Citation Information: Journal of Geodetic Science, ISSN (Print) 2081-9943, DOI: https://doi.org/10.2478/v10156-012-0001-y.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Georgios S. Vergos, Bihter Erol, Dimitrios A. Natsiopoulos, Vassilios N. Grigoriadis, Mustafa Serkan Işık, and Ilias N. Tziavos
Acta Geodaetica et Geophysica, 2017
[2]
[3]
Johannes Ihde, Laura Sánchez, Riccardo Barzaghi, Hermann Drewes, Christoph Foerste, Thomas Gruber, Gunter Liebsch, Urs Marti, Roland Pail, and Michael Sideris
Surveys in Geophysics, 2017, Volume 38, Number 3, Page 549
[4]
Johannes Bouman, Jörg Ebbing, Martin Fuchs, Josef Sebera, Verena Lieb, Wolfgang Szwillus, Roger Haagmans, and Pavel Novak
Scientific Reports, 2016, Volume 6, Number 1
[5]
T. Fecher, R. Pail, and T. Gruber
Surveys in Geophysics, 2017, Volume 38, Number 3, Page 571
[6]
Thomas Grombein, Kurt Seitz, and Bernhard Heck
Surveys in Geophysics, 2017, Volume 38, Number 2, Page 443
[7]
L. Sánchez, R. Čunderlík, N. Dayoub, K. Mikula, Z. Minarechová, Z. Šíma, V. Vatrt, and M. Vojtíšková
Journal of Geodesy, 2016, Volume 90, Number 9, Page 815
[8]
J Flury
Journal of Physics: Conference Series, 2016, Volume 723, Page 012051
[9]
Andrew D. Ludlow, Martin M. Boyd, Jun Ye, E. Peik, and P. O. Schmidt
Reviews of Modern Physics, 2015, Volume 87, Number 2, Page 637

Comments (0)

Please log in or register to comment.
Log in