Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

1 Issue per year

Open Access
See all formats and pricing
More options …

Towards a vertical datum standardisation under the umbrella of Global Geodetic Observing System

L. Sánchez
Published Online: 2013-01-29 | DOI: https://doi.org/10.2478/v10156-012-0002-x


Most of the existing height systems refer to local sea surface levels, are stationary (do not consider variations in time), and realise different physical height types (orthometric, normal, normal-orthometric, etc.). In general, their accuracy is about two orders of magnitude less than that of the realisation of geometric reference systems (sub millimetre level). The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG), taking care of providing a precise geodetic infrastructure for monitoring the system Earth, promotes the standardisation of height systems worldwide. The main objectives are: (1) to provide a reliable frame for consistent analysis and modelling of global phenomena and processes affecting the Earth’s gravity field and the Earth’s surface geometry; and (2) to support the precise combination of physical and geometric heights in order to exploit at a maximum the advantages of satellite geodesy (e.g. combination of satellite positioning and gravity field models for worldwide unified precise height determination). According to this, the GGOS Theme 1 ”Unified Height System” was established in February 2010 with the purpose to bring together existing initiatives and to address the activities to be faced. Starting point are the results delivered by the IAG Inter-Commission Project 1.2 ”Vertical Reference Frames” during the period 2003-2011. The present actions related to the vertical datum homogenisation are being coordinated by the working group ”Vertical Datum Standardisation”, which directly depends on the GGOS Theme 1 and is supported by the IAG Commissions 1 (Reference Frames) and 2 (Gravity Field), as well as by the International Gravity Field Service (IGFS). This paper discusses some aspects to take into consideration for the realisation of a standardised globally unified vertical reference system.

Keywords: GGOS height system; global reference level; global vertical reference system; vertical datum standardisation; W<sub>0</sub> reference value

  • Andersen O. B., Vest A. L. and Knudsen P., 2004, KMS04 mean sea surface model and inter-annual sea level variability. Poster presented at EGU Gen. Ass. 2005, Vienna, Austria, 24-29, April.Google Scholar

  • Andersen B. and Knudsen P., 2008, The DTU10 global Mean sea surface and Bathymetry. Presented EGU2008 General Assembly. Vienna, Austria, April 13-18. <http://www.space>.dtu.dk/English/Research/Scientific_data_and_models/Global_Mean_sea_surface.aspx Ardalan A. and Safari A., 2005, Global height datum unifi- cation: a new approach in the gravity potential space. J Geod 79, 512-523. Springer.Google Scholar

  • Balasubramania N., 1994, Definition and realization of a global vertical datum. Ohio State University, Department of Geodetic Science and Surveying. OSU Report No. 427. 112 pp.Google Scholar

  • Barthelmes F., 2009, Definition of functionals of the geopotential and their calculation from spherical harmonic models. GFZ Scientifc Technical Report STR09/02. GFZ, Potsdam, 36 p.www.gfz-potsdam.de - News - GFZ Publications.Google Scholar

  • Becker J. and Sandwel D., 2003, Accuracy and resolution of Shuttle Radar Topography Mission Data. Geosphys Res Lett 30, 9.Google Scholar

  • Burša M., Šíma Z. and Kostelecky J., 1992, Determination of the geopotential scale factor from satellite altimetry. Stud. Geoph. Geod. 36, 101-109.Google Scholar

  • Burša M., Radej K., Šíma Z., True S. and Vatrt V., 1997, Determination of the geopotential scale factor from Topex/Poseidon satellite altimetry. Stud. Geophys. Geod. 41, 203-215.Google Scholar

  • Burša M., Kouba J., Radej K., True S., Vatrt V. and Vojtíšková M., 1998a, Monitoring geoidal potential on the basis of Topex/Poseidon altimeter data and EGM96. In: Forsberg R., M. Feissel, R. Dietrich (Eds.): Geodesy on the Move - Gravity, Geoid, Geodynamics and Antarctica. IAG Symposia 119, 352 -358. Springer.Google Scholar

  • Burša M., Kouba J., Radej K., True S., Vatrt V. and Vojtíšková M., 1998b, Mean Earth’s equipotential surface from Topex/Poseidon altimetry. Stud. Geophys. Geod. 42, 456-466.Google Scholar

  • Burša M., Kouba J., Radej K., Vatrt V. and Vojtíšková M., 2001, Geopotential at tide gauge stations used for specifying a World Height System. Geographic Service of the Army of the Czech Republic, Acta Geodaetica No. 1, 87-96.Google Scholar

  • Burša M., Groten E., Kenyon S., Kouba J., Radej K., Vatrt V. and Vojtíšková M., 2002, Earth’s dimension specified by geoidal geopotential. Stud. Geophys. Geod. 46, 1-8.Google Scholar

  • Burša M., Kenyon S., Kouba J., Šíma Z., Vatrt V., Vitek V. and Vojtíšková M., 2007a, The geopotential value Wo for specifying the relativistic atomic time scale and a global vertical reference system. J Geod 81, 103 - 110.Google Scholar

  • Burša M., Šíma Z., Kenyon S., Kouba J., Vatrt V. and Vojtíšková M., 2007b, Twelve years of developments: geoidal geopotential Wo for the establishment of a world height system - present and future. In: Proceedings of the 1st international symposium of the International Gravity Field Service, Istanbul, p. 121-123.Google Scholar

  • Colombo O. L., 1980, A world vertical network. Report No. 296, Dept. of Geodetic Science and Surveying, The Ohio State University, Columbus.Google Scholar

  • Čunderlík R., Mikula K. and Mojzeš M., 2008, Numerical solution of the linearized fixed gravimetric boundary-value problem. J Geod 82, 15 - 29. DOI: 10.1007/s00190-007-0154-0. Springer.CrossrefGoogle Scholar

  • Čunderlík R. and Mikula K., 2009, Numerical solution of the fixed altimetry-gravimetry BVP using the direct BEM formulation. In: Sideris, M.G. (Ed.), Oberving our changing Earth, IAG Symposia 133:229-236. Springer.Google Scholar

  • Dayoub N., Edwards S.J. and Moore P., 2012, The Gauss- Listing potential value Wo and its rate from altimetric mean sea level and GRACE. J Geod DOI: 10.1007/s00190-012-1547-6.CrossrefGoogle Scholar

  • Drewes H., Sánchez L., Blitzkow D. and de Freitas S., 2002, Scientific foundations of the SIRGAS vertical reference system. In: Drewes H., Dodson A. H., Fortes L. P. S., Sánchez L. and Sandoval P. (Eds.) Vertical Reference Frames. IAG Symposia 124: 297-301. Springer.Google Scholar

  • Drewes H., Hornik H., Ádám J. and Rózsa S. (Eds.), 2012, The geodesist’s handbook 2012. J Geod 86, DOI - 10.1007/s00190-012-0584-1 Ekman M., 1995, What is the geoid? Reports of the Finnish Geodetic Institute 95, 49 - 51.Google Scholar

  • Förste Ch., Flechtner F., Schmidt R., König R., Meyer U., Stubenvoll R., Rothacher M., Barthelmes F., Neumayer H., Biancale R., Bruinsma S., Lemoine J. M. and Loyer F. G., 2006, A mean global gravity field model from the combination of satellite mission and altimetry/gravimetry surface data: EIGEN-GL04C. Geophys Res Abstr 8, 03462 Förste Ch., Flechtner F., Schmidt R., Stubenvoll R., Rothacher M., Kusche J., Neumayer H., Biancale R., Lemoine J. M., Barthelmes F., Bruinsma S., Koenig R. and Meyer U., 2008, EIGEN-GL05C - A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophy. Res. Abstr. 10, EGU2008-A-03426. SRef-ID: 1607-7962/gra/EGU2008-A-03426.Google Scholar

  • Gauss C. F., 1876, Trigonometrischen und polygonometrischen Rechnungen in der Feldmesskunst. Halle, a. S. Verlag von Eugen Strien. Bestimmung des Breitenunterschiedes zwischen den Sternwarten von Göttingen und Altona durch Beobachtungen am ramsdenschen Zenithsektor. In: Carl Friedrich Gauss Werke, neunter Band. Königlichen Gesellschaft der Wissenschaften zu Göttingen (1903).Google Scholar

  • Grafarend E. and Ardalan A., 1999, World Geodetic Datum 2000. J. Geod. 73, 611-623. Springer.Google Scholar

  • Groten E., 2002, Do we need a new reference system? In: Adan J. and Schwarz K.-P. (Eds). Vistas for Geodesy in the new millenium. IAG Symposia 125, 108-113, Springer.Google Scholar

  • Gruber Th., Abrikosov O. and Hugentobler U., 2010, GOCE standards. Document GP-TN-HPF-GS-0111, Issue 3.2. Prepared by the European GOCE Gravity Consortium EGG-C. http://earth.esa.int/pub/ESA_DOC/GOCE/ Heck B., 1989, A contribution to the scalar free boundary value problem of physical geodesy. Manus. Geod. 14, 87-99.Google Scholar

  • Heck B. and Rummel R., 1990, Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data. In: Sünkel H. and Baker T. (Eds.). Sea surface topography and geoid. IAG Symposia 104, 116-128. Springer.Google Scholar

  • Heck B., 2003, Rechenverfahren und Auswertemodelle der Landesvermessung. Herbert Wichmann Verlag, Heidelberg. 3. Auflage.Google Scholar

  • Heck B., 2004, Problems in the definition of vertical reference frames. In: Sanso, F. (Ed). Hotine-Marussi Symposium on Mathematical Geodesy. IAG Symposia 127, 164-173. Springer.Google Scholar

  • Heck B., 2011, A Brovar-type solution of the fixed geodetic boundary-value problem. Stud. Geophys. Geod. 55, 441 -454. AS CR, Prague.Google Scholar

  • Heiskanen W. A. and Moritz H., 1967, Physical Geodesy. W.H. Freeman, San Francisco.Google Scholar

  • Hernandes F. and Schaeffer Ph., 2001, The CLS01 mean sea surface: a validation with the GFSC00.1 surface. www.cls. fr/html/oceano/projects/mss/cls_01_en.html Hipkin R. G., 2002, Is there a need for a geodetic datum 2000? Discussion of a Heiskanen & Moritz Porposition. In: Adan J. and Schwarz K. P. (Eds). Vistas for Geodesy in the new millenium. IAG Symposia 125, 124-127, Springer.Google Scholar

  • Hirt C., Gruber T. and Featherstone W. E., 2011, Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. J Geod. 85, 723-740. DOI: 10.1007/s00190-011-0482-y.CrossrefGoogle Scholar

  • Hofmann-Wellenhof B. and Moritz H., 2005, Physical geodesy. Springer, Wien New York.Google Scholar

  • Ihde J. and Augath W., 2000, The Vertical Reference System for Europe. In: EUREF Report, Veröffentlichungen der Bayerischen Kommission für die internationale Erdmessung. Heft Nr. 61: 99 - 110. München.Google Scholar

  • Ihde J. and Sánchez L., 2005, A unified global height reference system as a basis for IGGOS. J. Geodyn. 40, 400 - 413.Google Scholar

  • Ihde J., 2007, Inter-Commission project 1.2: Vertical Reference Frames. Final report for the period 2003-2007. In: H. Drewes, H. Hornik, Eds. IAG Commission 1 - Reference Frames, Report 2003 - 2007. DGFI, Munich. Bulletin 20, 57 - 59.Google Scholar

  • Ihde J., Amos M., Heck B., Kersley B., Schöne T., Sánchez L. and Drewes H., 2007, Conventions for the definitions and realization of a conventional vertical reference system (CVRS), available at http://whs.dgfi.badw.de/ fileadmin/user_upload/CVRS_conventions_ final_20070629.pdf.Google Scholar

  • Khafid, 1998,. On the unification of Indonesian Local Heights. DGK, Reihe C, Heft 488, München.Google Scholar

  • Koblinsky C. J., Ray R., Becley B. D., Wang Y. M., Tsaoussi L., Brenner A. and Williamson R., 1999. NASA Ocean Altimeter Pathfinder Project, Report 1: Data processing handbook, NASA/TM - 1998 -208605, April.Google Scholar

  • Kotsakis C., Katsambalos K. and Ampatzidis D., 2012, Estimation of the zero-height geopotential level W0LVD in a local vertical datum from inversion of co-located GPS, leveling and geoid heights: a case of study in the Hellenic islands. J. Geod. 86, 423-439. DOI: 10.1007/s00190-011-0530-7 Kurtenbach E., Mayer-Gürr T. and Eicker A., 2009, Deriving daily snapshots of the Earth’s gravity field from GRACE L1B data using Kalman filtering. Geophys Res. Lett. 36, L17102, DOI:10.1029/2009GL039564.CrossrefGoogle Scholar

  • Kutterer H., Neilan R. and Bianco G., 2012, Global Geodetic Observing System (GGOS). In: Drewes H., H. Hornik, J. Ádám, S. Rózsa (Eds. 2012). The geodesist’s handbook 2012. J Geod 86, 10, 915 - 926. DOI - 10.1007/s00190-012-0584-1 Le Traon P. Y. and Morrow R., 2001, Ocean currents and eddies, Satellite altimetry and Earth sciences. In: Fu L. L., Cazenave A., (Eds.). Satellite Altimetry and Earth Sciences - A handbook of Techniques and Applications. International Geophysical Series, 69 Academic Press, San Diego.CrossrefGoogle Scholar

  • Ledersteger K., 1956, Die Minimalsysteme der metrischen Reduktion. Österreichische Zeitschrift für Vermessungswesen und Photogrammetrie 44, 43-50.Google Scholar

  • Lehmann R., 2000, Altimetry-gravimetry problems with free vertical datum. J. Geod. 74, 327 - 334. Springer.Google Scholar

  • Leismann M., Klees, R. and Beckers, H., 1992, Untersuchungen verschiedener Höhensysteme, dargestellt an einer Testschleife in Reihnland-Pfalz. DGKommission, Reihe B, Heft 296, München Lelgemann D., 1977, On the definition of the Listing-Geoid taking into consideration different height systems. Nachrichten aus dem Karten- und Vrermessungswesen, Reihe II, Heft Nr. 34, 25 - 46. Frankfurt.Google Scholar

  • Lemoine F., Kenyon S., Factor J., Trimmer R., Pavlis N., Chinn D., Cox C., Kloslo S., Luthcke S., Torrence M., Wang Y., Williamson R., Pavlis E., Rapp R. and Olson T., 1998, The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA, Goddard Space Flight Center, Greenbelt.Google Scholar

  • Mather R. S., 1978, The role of the geoid in four-dimensional geodesy. Mar. Geod. 1, 217-252.Google Scholar

  • McCarthy D. D., 1992, IERS Standards (1992). IERS Technical Note 13. Central Bureau of IERS - Observatoire de Paris, 163 p.Google Scholar

  • McCarthy D. D., 1996, IERS Conventions (1992). IERS Technical Note 21. Central Bureau of IERS - Observatoire de Paris, 101 p.Google Scholar

  • McCarthy D. D. and Petit G. (Eds.), 2004, IERS Conventions 2003. IERS Technical Note No. 32. Verlag des Bundesamtes für Kartographie und Geodäsie. Frankfurt am Main.Google Scholar

  • Menemenlis D., Campin J., Heimbach P., Hill C., Lee T., Nguyen A., Schodlock M. and Zhang H., 2008, ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, 31, 13-21.Google Scholar

  • Moritz H., 2000, Geodetic Reference System 1980. J. Geod. 74, 128-133.Google Scholar

  • Nesvorný D. and Šíma Z., 1994, Refinement of the geopotential scale factor Ro on the satellite altimetry basis. Earth, Moon and Planets 65, 79-88. Kluwer Academic Publishers.Google Scholar

  • Pail R., Goiginger H., Schuh W. D., Höck E., Brockmann J. M., Fecher T., Gruber T., Mayer-Gürr T., Kusche J., Jäggi A. and Rieser D., 2010, Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys. Res. Lett. 37, L20314. DOI:10.1029/2010GL044906.CrossrefGoogle Scholar

  • Pan M. and Sjöberg L. E., 1998, Unification of vertical datums by GPS and gravimetric geoid models with application to Fenoscandia. J. Geod. 72, 64 - 70.Google Scholar

  • Pavlis N-K., Holmes S. A., Kenyon S. C. and Factor J. K., 2012, The development of the Earth Gravitational Model 2008 (EGM2008). J Geophys. Res. 117, B04406. DOI:10.1029/2011JB008916.CrossrefGoogle Scholar

  • Petit G. and Luzum B. (Eds), 2010, IERS Conventions 2010. IERS Technical Note 36. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt a.M.Google Scholar

  • Plag H-P. and Pearlman M., 2009, Global Geodetic Observing System: Meeting the Requirements of a Global Society. Springer-Verlag Berlin, Heidelberg.Google Scholar

  • Ramsayer K., 1953, Die Schwerereduktion von Nivellements. DGK, Reihe A, Heft 6, München Ramsayer K., 1954, Vergleich verschiedener Schwerereduktionen von Nivellements. ZfV 79: 140-150 Rapp. R., 1983, The need and prospects for a world vertical datum. Proceedings of the International Association of Geodesy. IUGG General Assembly Hamburg 2, 432 - 445.Google Scholar

  • Rapp R., Nerem R. S., Shum C. K., Klosko S. M. and Williamson R. G., 1991, Consideration of permanent tidal deformation in the orbit determination and data analysis for the Topex/Poseidon mission. NASA technical memorandum 100775.11 p.Google Scholar

  • Rapp R. and Balasubramania N., 1992, A conceptual formulation of a world height system. Ohio State University, Department of Geodetic Science and Surveying. OSU Report No. 421. 55 pp.Google Scholar

  • Rapp R., 1994, Separation between reference surfaces of selected vertical datums. Bull. Géod. 69, 23-31.Google Scholar

  • Rapp R., 1995a, A world vertical datum proposal. Allgemeine Vermessungsnachrichten (AVN). 102 Jg. Heft 8-9, 297-204.Google Scholar

  • Rapp R., 1995b, Equatorial radius estimates from Topex altimeter data. Publication dedicated to Erwin Groten on the ocassion of his 60th anniversary. Publication of the Institite of Geodesy and Navigation (IfEN), University FAF Munich, 90-97.Google Scholar

  • Rapp R., 1997, Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference. J. Geod. 71, 282-289.Google Scholar

  • Rummel R. and Teunissen P., 1988, Height datum definiton, height datum connection and the role of the geodetic boundary value problem. Bull. Géod. 62, 477-498.Google Scholar

  • Rummel R. and Ilk K. H., 1995, Height datum connection - the ocean part. Allgemeine Vermessungsnachrichten (AVN). 102 Jg. Heft 8-9, 321-296.Google Scholar

  • Rummel R. and Heck B., 2000, Some critical remarks on the definition and realization of the EVRS. In: EUREF Report, Veröffentlichungen der Bayerischen Kommission für die internationale Erdmessung. Heft Nr. 61, 114-115. München.Google Scholar

  • Rummel R., 2001, Global unification of height systems and GOCE. In: Sideris M. (Eds.). Gravity, Geoid and Geodynamics. IAG Symposia 123, 12-19.Google Scholar

  • Sacerdote F. and Sansò F., 1986, The scalar boundary value problem of physical geodesy. Manus. Geod. 11, 15-28.Google Scholar

  • Sacerdorte F. and Sansò F., 2001, Wo: A story of the height datum problem. In: Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover. Nr. 241, 49-56.Google Scholar

  • Sacerdorte F. and Sansò F., 2004, Geodetic boundary-value problems and the height datum problem. In: Sansò F. (Ed).Google Scholar

  • Hotine-Marussi Symposium on Mathematical Geodesy. IAG Symposia 127, 174-178.Google Scholar

  • Sánchez L., 2003, Untersuchung physikalischer Höhen in Kolumbien. Studienarbeit. Institut für Planetare Geodäsie, Technische Universität Dresden. www.sirgas.org.Google Scholar

  • Sánchez L., 2007, Definition and Realization of the SIRGAS Vertical Reference System within a Globally Unified Height System. In: Tregoning, P., Ch. Rizos (Eds.), Dynamic planet. Springer, IAG Symposia 130, 638-645.Google Scholar

  • Sánchez L., 2008,. Approach for the establishment of a global vertical reference level. In: Xu, P., Liu J. and Dermanis A. (Eds.), VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy. Springer, IAG Symposia 132, 119-125.Google Scholar

  • Sánchez L., 2009, Strategy to establish a global vertical reference system. In: Drewes, H. (Ed.), Geodetic Reference Frames.Google Scholar

  • Springer, IAG Symposia, 134, 273-278, doi:10.1007/978-642-3-00860-3-42.CrossrefGoogle Scholar

  • Sansò F. and Venuti G., 2002, The height/geodetic datum problem. Geophys. J. Int. 149, 768 - 775.Google Scholar

  • Sansò F. and Usai S., 1995, Height datum and local geodetic datums in the theory of geodetic boundary problem. Allgemeine Vermessungsnachrichten (AVN). 102 Jg. Heft 8-9, 343-355.Google Scholar

  • Santos M. C., Vaníček P., Featherstone W. E., Kingdon R., Ellmann A., Martin B.-A., Kuhn M. and Tenzer R., 2006, The relation between rigorous and Helmert’s definitions of orthometric heights. J. Geod. 80, 691-704. DOI: 10.1007/s00190-006-0086-0.CrossrefGoogle Scholar

  • Tenzer R., Vaníček P., Santos M., Featherstone W. E. and Kuhn M., 2005, The rigorous determination of orthometric heights. J Geod. 79, 82-92. DOI: 10.1007/s00190-005-0445-2 Tenzer R., Vatrt V., Abdalla A. and Dayoub N., 2011Assessment of the LVD offsets for the normal-orthometric heights and different permanent tide systems. Applied Geomatics 3, 19, 1-8.CrossrefGoogle Scholar

  • Torge W., 2001, Geodesy, Walter de Gruyter, Berlin, New York.Google Scholar

  • Tscherning C. C., Rapp R. and Goag C., 1983, A comparison of methods for computing gravimetric quatities from high degree spherical harmonic expansions. Manus. Geod. 8, 249-272.Google Scholar

  • Van Onselen K., 1997, Quality investigation of vertical datum connection. Delft University of Technology. DEOS Report No. 97.3. 98 pp.Google Scholar

  • Xu P. and Rummel R., 1991, A quality investigation of global vertical datum connection. Netherlands Geodetic Commission. Publications on Geodesy. N. 34.Google Scholar

  • Yurkina M., 1996, Gravity potential at the major vertical datum as primary constant. Stud. Geophys. Geod. 40, 9-13.Google Scholar

About the article

Published Online: 2013-01-29

Published in Print: 2012-12-01

Citation Information: Journal of Geodetic Science, Volume 2, Issue 4, Pages 325–342, ISSN (Print) 2081-9943, DOI: https://doi.org/10.2478/v10156-012-0002-x.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Adam Łyszkowicz, Joanna Kuczyńska-Siehień, and Monika Biryło
Reports on Geodesy and Geoinformatics, 2015, Volume 97, Number 1
J. Müller, D. Dirkx, S. M. Kopeikin, G. Lion, I. Panet, G. Petit, and P. N. A. M. Visser
Space Science Reviews, 2018, Volume 214, Number 1
Johannes Ihde, Laura Sánchez, Riccardo Barzaghi, Hermann Drewes, Christoph Foerste, Thomas Gruber, Gunter Liebsch, Urs Marti, Roland Pail, and Michael Sideris
Surveys in Geophysics, 2017, Volume 38, Number 3, Page 549
Joanna Kuczynska-Siehien, Adam Lyszkowicz, Katarzyna Stepniak, and Marta Krukowska
Acta Geodaetica et Geophysica, 2016
L. Sánchez, R. Čunderlík, N. Dayoub, K. Mikula, Z. Minarechová, Z. Šíma, V. Vatrt, and M. Vojtíšková
Journal of Geodesy, 2016, Volume 90, Number 9, Page 815

Comments (0)

Please log in or register to comment.
Log in