Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
See all formats and pricing
More options …

Evaluation of W0 in Canada using tide gauges and GOCE gravity field models

T. Hayden
  • Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ E. Rangelova
  • Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. G. Sideris
  • Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Véronneau
  • Geodetic Survey Division, Natural Resources Canada, 615 Booth Street, Ottawa, Ontario, K1A 0E9, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-01-29 | DOI: https://doi.org/10.2478/v10156-012-0003-9


The existing Canadian Geodetic Vertical Datum of 1928 (CGVD28) does not meet the needs of the modern user in terms of accuracy and accessibility. As a result, Canada plans to implement a geoid-based and global navigation satellite system (GNSS)-accessible vertical datum by 2013. One of the primary concerns in realizing this new vertical datum is to determine a W0 value that will represent the potential of the zero height surface. The objective of this study is to evaluate W0 by averaging the potential of points on the mean sea water surface utilizing tide gauge recordings and gravity field and steady-state ocean circulation explorer (GOCE)-based global geopotential models. In order to assess the performance of the GOCE-based models for the computation of W0, the models are extended with the high resolution gravitational model EGM2008. Regional gravimetric geoid models are also used for the estimation of W0. Additionally, local sea surface topography models are utilized in order to validate the W0 results at the tide gauges. Excluding the Arctic coast, the W0 values obtained from both tide gauges and oceanic sea surface topography models are not statistically different from the International Earth Rotation and Reference Systems Service (IERS) 2010 global conventional value 62636856.00 m2/s2.

Keywords: GOCE; mean sea level; sea surface topography; vertical datum; W<sub>0<sub/>

  • Anderson O. B. and Knudsen P., 2009, DNSC08 mean sea surface and mean dynamics topography models, J. Geophys. Res., 114, C11001, DOI: 10.1029/2008JC005179.CrossrefGoogle Scholar

  • Ardalan A., Grafarend E. and Kakkuri J., 2002, National height datum, the Gauss-Listing geoid level value w0 and its time variation w˙0 (Baltic Sea Level Project: epochs 1990.8, 1993.8, 1997.4), J. Geod., 76, 1-28.Google Scholar

  • Ardalan A. A. and Safari A., 2005, Global height datum unification: a new approach in gravity potential space, J. Geod., 79, 512-523.Google Scholar

  • Argus D. E. and Peltier W. R., 2010, Constraining models of postglacial rebound using space geodesy: a detailed assessment of model ICE-5G (VM2) and its relatives, Geophys. J. Int., 181, 697-723.Web of ScienceGoogle Scholar

  • Bessel F. W., 1837, Über den Einfluss der Unregelmässigkeiten der Figur der Erde auf geodätische Arbeiten und ihre Vergleichung mit den Astronomischen Bestimmungen, Astronomische Nachrichten, 14, 269.Google Scholar

  • Bingham R. J. and Haines K., 2006, Mean dynamic topography: Intercomparisions and errors, Philos. Trans. R. Soc., Ser. A, 364, 903-916.Google Scholar

  • Bruinsma S. L., Marty J. C., Balmino G., Biancale R., Foerste C., Abrikosov O. et al., 2010, GOCE Gravity Field Recovery by Means of the Direct Numerical Method, Presented at the ESA Living Planet Symposium, 27th June - 2nd July 2010, Bergen, Norway.Google Scholar

  • Burša M., Kouba J., Raděj K., True S. A., Vatrt V. and Vojtíšková M., 1998, Mean Earth’s Equipotential Surface from TOPEX/POSEIDON Altimetry, Stud. Geoph. Geod., 42, 459-466.Google Scholar

  • Buša M., Kenyon S., Kouba J., Šima Z., Vart V. and Vojtíšková M., 2004, A global vertical reference frame based on four regional vertical datums, Stud. Geophys. Geod., 48, 493-502.Google Scholar

  • Cannon J. B., 1929, Adjustment of the Precise Level Net of Canada 1928, Publication No. 28, Geodetic Survey Division, Earth Sciences Sector, Natural Resources Canada, Ottawa, Canada.Google Scholar

  • Church J. A., White N. J., Coleman R., Lambeck K. and Mitrovica J., 2004, Estimates of the regional distribution of sea level rise over the 1950-2000 period, J. Clim., 17, 2609-2625.Google Scholar

  • Drinkwater M. R., Floberghagen R., Haagmans R., Muzi D. and Popescu A., 2003, VII: Closing Session: GOCE: ESA’s First Earth Explorer Core Mission, Space Sci. Rev., 108, 1-2, 419-432.Google Scholar

  • Ekman M., 1989, Impacts of geodynamic phenomena on systems for height and gravity, Bull. Geod., 63, 281-296.Google Scholar

  • Ekman M. and Mäkinen J., 1996, Mean sea surface topography in the Baltic Sea and its transition area to the North Sea: a geodetic solution and comparison with oceanographic models, J. Geophys. Res., 101, C5, 11993-11.Google Scholar

  • Foreman M. G. G., Crawford W. R., Cherniawsky J. Y. and Galbraith J., 2008, Dynamic ocean topography for the northeast Pacific and its continental margins, Geophys. Res. Lett., 35, L22606, DOI: 10.1029/2008GL035152.CrossrefWeb of ScienceGoogle Scholar

  • Gauss C. F., 1828, Bestimmung des Breitenunterschiedes zwischen den Sternwarten von Göttingen und Altona, Vandenhoek und Ruprech, Göttingen.Google Scholar

  • Grafarend E. W. and Ardalan A. A., 1997, W0: an estimate in the Finnish Height Datum N60, epoch 1993.4, from twenty- five GPS points of the Baltic Sea Level Project, J. Geod., 71, 673-679.Google Scholar

  • Hirt C., Kuhn M., Featherstone W. E. and Göttl F., 2012, Topographic/isostatic evaluation for new-generation GOCE gravity field models, J. Geophys. Res., 117, B05407, DOI: 10.1029/2011JB00878.CrossrefWeb of ScienceGoogle Scholar

  • Huang J. and Véronneau M., 2013, Canadian Gravimetric Geoid Model, J.Geod. (in press) Ince E. S., Sideris M. G., Huang J. and Véronneau M., 2012, Assessment of the GOCE-Based global gravity models in Canada, Geomatica, 66, 2, 125-145.Google Scholar

  • Kotsakis C., Katsambalos K. and Ampatzidis D., 2011, Estimation of the zero-height geopotential level WLVD 0 in a local vertical datum from inversion of co-located GPS, leveling and geoid heights: a case study in the Hellenic islands, J. Geod., 86, 6, 423 Listing J. B., 1873, Über unsere jetzige Kenntnis der Gestalt und Gröÿe der Erde, Dietrichsche Verlagsbuchhandlung, Göttingen.Google Scholar

  • Mäkinen J. and Ihde J., 2009, The permanent tide in height systems, IAG Symp. Series, 133, 81-87, Springer, Berlin.Google Scholar

  • Maximenko N., Niiler P., Centurioni L., Rio M. H., Melnickenko O., Chambers D. et al., 2009, Mean Dynamic Topography of the Ocean derived from Satellite and Drifting Buoy Data using Three Different Techniques, J. Atmos. and Ocean. Tech., 26, 2, 1910-1919.Web of ScienceGoogle Scholar

  • Mazzotti S., Jones C. and Thomson R. E., 2008, Relative and absolute sea level rise in western Canada and northwestern United States from a combined tide gauge-GPS analysis, J. Geophys. Res., 113, C11019, DOI: 10.1029/2008JC004835.Web of ScienceCrossrefGoogle Scholar

  • National Geodetic Survey (NGS), 2008, The National Geodetic Survey Ten-Year Plan: Mission, Vision, and Strategy 2008-2018, Silver Spring, MD, U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service.Google Scholar

  • Pail R., Goiginger H., Schuh W. D., Höck E., Brockmann J. M., Fecher T., et al., 2010, Combined satellite gravity field model GOCO01S derived from GOCE and GRACE, Geophys. Res. Lett., 37, L20314, DOI: 10.1029/2010GL044906.Web of ScienceCrossrefGoogle Scholar

  • Pail R., Bruinsma S., Migliaccio F., Foerste C., Goiginger H., Schuh W. D. et al., 2011, First GOCE gravity field models derived by three different approaches, J. Geod., 85, 11, 819-843.Google Scholar

  • Pavlis N. K., Holmes S. A., Kenyon S. C. and Factor J. K., 2012, The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res., 117, B04406, DOI: 10.1029/2011JB008916.CrossrefGoogle Scholar

  • Petit G. and Luzum B., eds., 2010, IERS Convention 2010, IERS Technical Note 36, Verlag den Bundesamtes für Kartographie und Geodäsie, Frankfurt.Google Scholar

  • Pugh D. T., 1987, Tides, Surges, and Mean Sea Level, John Wiley & Sons Ltd., Chichester.Google Scholar

  • Rapp R. H. and Wang Y. M., 1994, Dynamic topography estimates using Geosat data and a gravimetric geoid in the Gulf Stream region, Geophys. J. Int., 117, 2, 511-528.Google Scholar

  • Reigber C., Lühr H. and Schwintzer P., 2002, CHAMP mission status, Adv. Space Res., 30, 129-134.Google Scholar

  • Rio M. H. and Hernandez F., 2004, A mean dynamic topography computed over the world oceans from altimetry, in situ measurements, and a geoid model, J. Geophys. Res., 109, C12032, DOI: 10.1029/2003JC002226.CrossrefGoogle Scholar

  • Roman D. and Weston N. D., 2012, Beyond GEOID12: Implementing a New Vertical Datum for North America, FIG Proceedings 2012, Rome, Italy, 6-10 May 2012.Google Scholar

  • Sánchez, L., 2009, Strategy to Establish a Global Vertical Reference System, IAG Symp. Series, 134, 273-278, Springer, Berlin.Google Scholar

  • Smith D. A., Véronneau M., Roman D. R., Huang J., Wang Y. M. and Sideris M. G., 2013, Towards the Unification of the Vertical Datum Over the North American Continent, IAG Symp. Series, 138, 237-241, Springer, Berlin.Google Scholar

  • Snay R., Cline M., Dillinger W., Foote R., Hilla S., Kass W. et al., 2007, Using global positioning-system derived crustal velocities to estimate rates of absolute sea level change from North America tide gauge records, J. Geophys. Res., 112, B04409, DOI: 10.1029/2006JB004606.Web of ScienceCrossrefGoogle Scholar

  • Sturges W., 1967, Slope of sea level along the Pacific Coast of the United States, J. Geophys. Res., 72, 14, 3627-3637.Google Scholar

  • Tapley B. D., Bettadpur S., Watkins M. and Reigber C., 2004, The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, DOI: 10.1029/2004GL019920.CrossrefGoogle Scholar

  • Thompson K. R. and Demirov E., 2006, Skewness of sea level variability of the world’s oceans, J. Geophys. Res., 111, C05005, DOI: 10.1029/2004JC002839.CrossrefGoogle Scholar

  • Thompson K. R., Huang J., Véronneau M., Wright D. G. and Lu Y., 2009, The mean sea surface topography of the northwest Atlantic: Comparison of estimates based on satellite, terrestrial gravity, and oceanographic observations, J. Geophys. Res., 114, C07015, DOI: 10.1029/2008JC004859.CrossrefGoogle Scholar

  • Véronneau M. and Héroux P., 2006, Canadian Height Reference System Modernization: Rational Status and Plans, Report Natural Resources of Canada, Ottawa, Ontario, Canada, available at http://www.geod.nrcan.gc.ca/hm/pdf/ geocongres_e.pdf.Google Scholar

  • Véronneau M., 2012, Determination of a mean potential W0 for North America, Internal Report, Geodetic Survey Division, Natural Resources Canada, Ottawa, Canada.Google Scholar

About the article

Published Online: 2013-01-29

Published in Print: 2012-12-01

Citation Information: Journal of Geodetic Science, Volume 2, Issue 4, Pages 290–301, ISSN (Print) 2081-9943, DOI: https://doi.org/10.2478/v10156-012-0003-9.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in