Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Sjöberg, Lars

1 Issue per year

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Towards worldwide height system unification using ocean information

P.L. Woodworth
  • Corresponding author
  • National Oceanography Centre, Joseph Proudman Building, 6 Brownlow Street, Liverpool L3 5DA, United Kingdom
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C.W. Hughes
  • National Oceanography Centre, Joseph Proudman Building, 6 Brownlow Street, Liverpool L3 5DA, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R.J. Bingham
  • School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T. Gruber
  • Institut für Astronomische und Physikalische Geodäsie, Technische Universität München, Arcisstrasse 21, 80333 München, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-01-29 | DOI: https://doi.org/10.2478/v10156-012-0004-8

Abstract

We describe the application of ocean levelling to worldwide height system unification. The study involves a comparison of ‘geodetic’ and ‘ocean’ approaches to determination of the mean dynamic topography (MDT) at the coast, from which confidence in the accuracy of stateof- the-art ocean and geoid models can be obtained. We conclude that models are consistent at the sub-decimetre level for the regions that we have studied (North Atlantic coastlines and islands, North American Pacific coast and Mediterranean). That level of consistency provides an estimate of the accuracy of using the ocean models to provide an MDT correction to the national datums of countries with coastlines, and thereby of achieving unification. It also provides a validation of geoid model accuracy for application to height system unification in general. We show how our methods can be applied worldwide, as long as the necessary data sets are available, and explain why such an extension of the present study is necessary if worldwide height system unification is to be realised.

Keywords: Mean Dynamic Topography; National Datums; Ocean and Geoid Models; Ocean Levelling

  • Adam J., Augath W., Brouwer F., Engelhardt G., Gurtner W., Harsson B. G., Ihde J., Ineichen D., Lang H., Luthardt J., Sacher M., Schlüter W., Springer T., Wöppelmann G., 1999, Status and Development of the European Height Systems. pp.55-60 in, Geodesy Beyond 2000. IAG Symposia Volume 121. Proceedings of the IAG General Assembly, Birmingham, July 18-30, 1999. (ed. K-P. Schwarz). Berlin and Heidelberg: Springer Publishing.Google Scholar

  • Altamimi Z., Collilieux X., Métivier L., 2011, ITRF2008: an improved solution of the International Terrestrial Reference Frame, J. Geod., 85, 457-473, DOI:10.1007/s00190-011-0444-4.CrossrefGoogle Scholar

  • Andersen O.B., Knudsen P., 2009, DNSC08 mean sea surface and mean dynamic topography models, J. Geophys. Res., 114, C11001, DOI:10.1029/2008JC005179.CrossrefGoogle Scholar

  • Bernier N.B., Thompson K.R., 2006, Predicting the frequency of storm surges and extreme sea levels in the northwest Atlantic, J. Geophys. Res., 111, C10009, DOI:10.1029/2005JC003168.CrossrefGoogle Scholar

  • Bingham R.J., Haines K., Hughes C.W., 2008, Calculating the ocean’s mean dynamic topography from a Mean Sea Surface and a Geoid, J. Atmos. Ocean. Tech., 25, 1808-1822, DOI:10.1175/2008JTECHO568.1.CrossrefGoogle Scholar

  • Brown J.M., Bolaños R., Wolf J., 2011, Impact assessment of advanced coupling features in a tide-surge-wave model, POLCOMS-WAM, in a shallow water application, J. Marine Syst., 87, 13-24, DOI:10.1016/j.jmarsys.2011.02.006.CrossrefGoogle Scholar

  • Cartwright, D.E., Crease, J., 1962, A comparison of the geodetic reference levels of England and France by means of the sea surface, P. Roy. Soc. Lond. A, 273, 558-580, DOI:10.1098/rspa.1963.0109.CrossrefGoogle Scholar

  • Close C., 1922, The second geodetic levelling of England and Wales 1912-1921. Published for the Ordnance Survey by His Majesty’s Stationery Office, London. 62pp. and plates.Google Scholar

  • Cole J., 1939, Revision of first order levelling lower Egypt. Survey Department Paper No. 44, Egyptian Survey Authority, Giza, Egypt.Google Scholar

  • Dean R.G., Walton T.L., 2009, Wave setup. Chapter 1 in, Handbook of Coastal and Ocean Engineering. World Scientific Publishing Co. Ltd. http://www.worldscibooks.com/ engineering/6914.html.Google Scholar

  • Duquenne H., Rebischung P., Duquenne F., Harmel A., Coulomb A., 2007, Status of the zero-order levelling network of France and consequences for UELN. Proceedings of the EUREF Symposium, London, 6-9 June 2007. 5pp.Google Scholar

  • Ekman M., 1989, Impacts of geodynamic phenomena on systems for height and gravity, B. Géod. (J. Geod.), 63, 281-296, DOI:10.1007/BF02520477.CrossrefGoogle Scholar

  • EGG-C 2010. GOCE High Level Processing Facility, GOCE Level 2 Product Data Handbook. The European GOCE Gravity Consortium Document Number GO-MA-HPF-GS-0110 (December 2010). Internal Report of Institute of Astronomical and Physical Geodesy, Technical University Munich, Germany.Google Scholar

  • EVRF 2007. European Vertical Reference Frame 2007. Follow link on ‘Related Projects’ then ‘Height Datum Relations’ from http://www.bkg.bund.de/nn_164794/geodIS/ EVRS/EN/EVRF2007/evrf2007__node.html.Google Scholar

  • Featherstone W.E., Filmer M.S., 2012, The north-south tilt in the Australian Height Datum is explained by the ocean’s mean dynamic topography, J. Geophys. Res., 117, C08035, DOI:10.1029/2012JC007974.CrossrefGoogle Scholar

  • Flather R.A., Smith J.A., Richards J.D., Bell C., Blackman D.L., 1998, Direct estimates of extreme storm surge elevations from a 40-year numerical model simulation and from observations, The Global Atmosphere and Ocean System, 6, 165-176.Google Scholar

  • Flather R.A., 2000, Existing operational oceanography, Coast. Eng., 41, 13-40, DOI:10.1016/S0378-3839(00)00025-9.CrossrefGoogle Scholar

  • Flury J., Rummel R., 2005, Future satellite gravimetry for geodesy, Earth, Moon and Planets, 94, 13-29, DOI:10.1007/s11038-005-3756-7.CrossrefGoogle Scholar

  • Forbes D.L., Manson G.K., Charles J., Thompson K.R., Taylor R.B., 2009, Halifax harbour extreme water levels in the context of climate change: scenarios for a 100-year planning horizon, Geological Survey of Canada. Open File 6346. 22pp.Google Scholar

  • Frihy O.E., 1992, Sea-level rise and shoreline retreat of the Nile Delta promontories, Egypt, Nat. Hazards, 5, 65-81, DOI:10.1007/BF00127140.CrossrefGoogle Scholar

  • Gruber T., Gerlach C., Haagmans R., 2013, Intercontinental height datum connection with GOCE and GPS-levelling data, J. Geod. Sci. 2, 4, 270-280.Google Scholar

  • Hamouda A.Z., 2006, Numerical computations of 1303 tsunamigenic propagation towards Alexandria, Egyptian Coast, J. Afr. Earth Sci., 44, 37-44, DOI:10.1016/j.jafrearsci.2005.11.005.CrossrefGoogle Scholar

  • Higginson S., 2012, Mapping and understanding the mean surface circulation of the North Atlantic: Insights from new geodetic and oceanographic measurements. Unpublished PhD thesis, Dalhousie University. Available from http:// dalspace.library.dal.ca/handle/10222/14866.Google Scholar

  • Holt J.T., James I.D., 2001, An s coordinate density evolving model of the northwest European continental shelf: 1, Model description and density structure, J. Geophys. Res., 106, C7, DOI:10.1029/2000JC000303.CrossrefGoogle Scholar

  • Holt J., Harle J., Proctor R., Michel S., Ashworth M., Batstone C., Allen I., Holmes R., Smyth T., Haines K., Bretherton D., Smith G., 2009, Modelling the global coastal ocean, Phil. Trans. Roy. Soc. Lond. A, 367, 939-951, DOI:10.1098/rsta.2008.0210.CrossrefGoogle Scholar

  • Hughes C.W., Bingham R.J., 2008, An oceanographer’s guide to GOCE and the geoid, Ocean Sci., 4, 15-29, DOI:www.oceansci. net/4/15/2008/.Google Scholar

  • Kistler R., Collins C., Saha S., White G., Woollen J., Kalnay E., Chelliah M., Ebisuzaki W., Kanamitsu M., Kousky V., van den Dool H., Jenne R., Fiorino M., 2001, The NCEP-NCAR 50 year reanalysis: monthly means CD-ROM and documentation, B. Am. Meteorol. Soc., 82, 247-267.Google Scholar

  • Köhl, A., Stammer, D., Cornuelle, B., 2007, Interannual to decadal changes in the ECCO global synthesis, J. Phys. Oceanogr., 37, 313-337, DOI:10.1175/JPO3014.1.CrossrefGoogle Scholar

  • Köhl A., Stammer D., 2008, Decadal sea level changes in the 50-Year GECCO ocean synthesis, J. Clim., 37, 1876-1890, DOI:10.1175/2007JCLI2081.1.CrossrefGoogle Scholar

  • Marsh R., de Cuevas B.A., Coward A.C., Jacquin J., Hirschi J.J.M., Aksenov Y., Nurser A.J.G., Josey S.A., 2009, Recent changes in the North Atlantic circulation simulated with eddy-permitting and eddy-resolving ocean models, Ocean Modell., 28, 4, 226-239, DOI:10.1016/j.ocemod.2009.02.007.CrossrefGoogle Scholar

  • Marshall J., Hill C., Perelman L., Adcroft A., 1997a, Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modelling, J. Geophys. Res., 102, C3, DOI:10.1029/96JC02775102.CrossrefGoogle Scholar

  • Marshall J., Adcroft A., Hill C., Perelman L., Heisey C., 1997b, A finite-volume, incompressible Navier-Stokes model for studies ocean on parallel computers, J. Geophys. Res., 102, C3, DOI:10.1029/96JC02776.CrossrefGoogle Scholar

  • Maximenko N., Niiler P., Rio M.-H., Melnichenko O., Centurioni L., Chambers D., Zlotnicki V., Galperin B., 2009, Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques, J. Atmos. Ocean. Tech., 26, 1910-1919, DOI:10.1175/2009JTECHO672.1.CrossrefGoogle Scholar

  • Mayer-Gürr T., Rieser D., Höck E., Brockmann J.M., Schuh W.-D., Krasbutter I., Kusche J., Maier A., Krauss S., Hausleitner W., Baur O., Jäggi A., Meyer U., Prange L., Pail R., Fecher T., Gruber T., 2012, The new combined satellite only model GOCO03s. Abstract submitted to the International Symposium on Gravity, Geoid and Height Systems, Venice, Italy, 9-12 October 2012.Google Scholar

  • Menemenlis D., Fukumori I., Lee T., 2005, Using Green’s functions to calibrate an ocean general circulation model, Mon. Weather Rev., 133, 1224-1240, DOI:10.1175/MWR2912.1.CrossrefGoogle Scholar

  • Mohammed H.F., 2005, Realization and redefinition of the Egyptian vertical datum based on recent heterogeneous observations. Unpublished PhD thesis. Zagazig University.Google Scholar

  • Nicholls R.J., 2010, Impacts of and responses to sea-level rise. pp.17-51 (Chapter 2) in, Understanding sea-level rise and variability (eds. J.A. Church, P.L. Woodworth, T. Aarup and S. Wilson). London: Wiley-Blackwell.Google Scholar

  • Pail R., Goiginger H., Schuh W.-D., Höck E., Brockmann J. M., Fecher T., Gruber T., Mayer-Gürr T., Kusche J., Jäggi A., Rieser D., 2010, Combined satellite gravity field model GOCO01S derived from GOCE and GRACE, Geophys. Res. Lett., 37, L20314, DOI:10.1029/2010GL044906.CrossrefGoogle Scholar

  • Pail R., Bruinsma S., Migliaccio F., Förste C., Goiginger H., Schuh W.-D., Höck E., Reguzzoni M., Brockmann J.M., Abrikosov O., Veicherts M., Fecher T., Mayrhofer R., Krasbutter I., Sansò F., Tscherning C.C., 2011, First GOCE gravity field models derived by three different approaches, J. Geod., 85, 819-843, DOI:10.1007/s00190-011-0467-x.CrossrefGoogle Scholar

  • Pail R., 2013, Global gravity field models and their use in Earth System Research. Chapter to be published in, Earth Observation of Global Changes (EOGC) (eds. Krisp J.M., Meng L., Pail R., and Stilla U. ), Berlin: Springer-Verlag.Google Scholar

  • Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K., 2012, The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res., 117, B4, DOI:10.1029/2011JB008916.CrossrefGoogle Scholar

  • Plag H-P., M. Pearlman, (eds.), 2009, Global Geodetic Observing System: Meeting the requirements of a global society on a changing planet in 2020. Berlin: Springer Geoscience. 332pp.Google Scholar

  • Rio M.H., Poulain P.-M., Pascual A., Mauri E., Larnicol G., Santoleri R., 2007, A Mean Dynamic Topography of the Mediterranean Sea computed from altimetric data, in-situ measurements and a general circulation model, J. Marine Syst., 65, 484-508, DOI:10.1016/j.jmarsys.2005.02.006.CrossrefGoogle Scholar

  • Rio M. H., Guinehut S., Larnicol G., 2011, New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements, J. Geophys. Res., 116, C07018, DOI:10.1029/2010JC006505.CrossrefGoogle Scholar

  • Rossiter J.R., 1967, An analysis of annual sea level variations in European waters, Geophys. J. Roy. Astro. S., 12, 259-299, DOI:10.1111/j.1365-246X.1967.tb03121.x.CrossrefGoogle Scholar

  • Rummel R., 2013, Height unification using GOCE, J. Geod. Sci. 2, 4, 355-362.Google Scholar

  • Santamaria-Gomez A., Gravelle M., Collilieux X., Guichard M., Martin Miguez B., Tiphaneau P., Wöppelmann G., 2012, Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field, Global Planet. Change, DOI:10.1016/j.gloplacha.2012.07.007.CrossrefGoogle Scholar

  • Smith D.M., Murphy J.M., 2007, An objective ocean temperature and salinity analysis using covariances from a global climate model, J. Geophys. Res., 112, C02022, DOI:10.1029/2005JC003172.CrossrefGoogle Scholar

  • Sturges W., 1974, Sea level slope along continental boundaries, J. Geophys. Res., 79, 825-830, DOI:10.1029/JC079i006p00825.CrossrefGoogle Scholar

  • Tapley B.D., Bettadpur S., Watkins M., Reigber C., 2004, The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, DOI:10.1029/2004GL01992.CrossrefGoogle Scholar

  • Thompson K.R., 1980, An analysis of British monthly mean sea level, Geophys. J. Roy. Astro. S., 63, 57-73, DOI:10.1111/j.1365-246X.1980.tb02610.x.CrossrefGoogle Scholar

  • Tsimplis M.N., Woodworth P.L., 1994, The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data, J. Geophys. Res., 99, C8, DOI:10.1029/94JC01115.CrossrefGoogle Scholar

  • Véronneau M., Duval R., Huang J., 2006, A gravimetric geoid model as a vertical datum in Canada, Geomatica, 60, 165-172.Google Scholar

  • Visser P.N.A.M., Rummel R., Balmino G., Sunkel H., Johannessen J., Aguirre M., Woodworth P.L., Le Provost C., Tscherning C.C., Sabadini R., 2002, The European Earth Explorer Mission GOCE: impact for the geosciences. pp.95-107 in, Ice Sheets, Sea Level and the Dynamic Earth. Geodynamics Series 29, American Geophysical Union (eds. J. Mitrovica and L.L.A. Vermeersen).Google Scholar

  • Webb D.J., Coward A.C., de Cuevas B.A., Gwilliam C.S., 1997, A multiprocessor ocean general circulation model using message passing, J. Atmos. Ocean. Tech., 14, 175-182, DOI:10.1175/1520-0426(1997)014<0175:AMOGCM>2.0.CO;2.CrossrefGoogle Scholar

  • Woodworth P.L., Player R., 2003, The Permanent Service for Mean Sea Level: an update to the 21st century, J. Coastal Res., 19, 287-295.Google Scholar

  • Woodworth P.L., Aman A., Aarup T., 2007, Sea level monitoring in Africa, Afr. J. Marine Sci., 29, 3, 321-330, DOI:10.2989/AJMS.2007.29.3.2.332.CrossrefGoogle Scholar

  • Woodworth P.L., Horsburgh K.J., 2011, Surge models as providers of improved ”inverse barometer corrections” for coastal altimetry users. pp.177-189 in, Coastal Altimetry (eds. S. Vignudelli, A. Kostianoy, P. Cipollini and J. Benveniste). Springer Publishing. DOI:10.1007/978-3-642-12796-0_7.CrossrefGoogle Scholar

  • Woodworth P.L., 2011, A note on the nodal tide in sea level records, J. Coastal Res., 28, 316-323, DOI:10.2112/JCOASTRESD-11A-00023.1. CrossrefGoogle Scholar

About the article

Published Online: 2013-01-29

Published in Print: 2012-12-01


Citation Information: Journal of Geodetic Science, ISSN (Print) 2081-9943, DOI: https://doi.org/10.2478/v10156-012-0004-8.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Martina Idžanović, Vegard Ophaug, and Ole Baltazar Andersen
Geophysical Research Letters, 2017, Volume 44, Number 11, Page 5609
[2]
S. D. P. Williams and F. G. Nievinski
Journal of Geophysical Research: Solid Earth, 2017, Volume 122, Number 3, Page 2310
[3]
T. Fecher, R. Pail, and T. Gruber
Surveys in Geophysics, 2017, Volume 38, Number 3, Page 571
[4]
Thomas Grombein, Kurt Seitz, and Bernhard Heck
Surveys in Geophysics, 2017, Volume 38, Number 2, Page 443
[5]
Paolo Cipollini, Francisco M. Calafat, Svetlana Jevrejeva, Angelique Melet, and Pierre Prandi
Surveys in Geophysics, 2017, Volume 38, Number 1, Page 33
[6]
J Flury
Journal of Physics: Conference Series, 2016, Volume 723, Page 012051
[7]
Guy Wöppelmann and Marta Marcos
Reviews of Geophysics, 2016, Volume 54, Number 1, Page 64
[8]
E. Bradshaw, P.L. Woodworth, A. Hibbert, L.J. Bradley, D.T. Pugh, C. Fane, and R.M. Bingley
Marine Geodesy, 2016, Volume 39, Number 2, Page 115
[9]
S. Higginson, K. R. Thompson, P. L. Woodworth, and C. W. Hughes
Geophysical Research Letters, 2015, Volume 42, Number 5, Page 1471
[10]
Kristine S. Madsen, Jacob L. Høyer, Weiwei Fu, and Craig Donlon
Journal of Geophysical Research: Oceans, 2015, Volume 120, Number 9, Page 6405
[11]
Vegard Ophaug, Kristian Breili, and Christian Gerlach
Journal of Geophysical Research: Oceans, 2015, Volume 120, Number 12, Page 7807
[12]
Andrew D. Ludlow, Martin M. Boyd, Jun Ye, E. Peik, and P. O. Schmidt
Reviews of Modern Physics, 2015, Volume 87, Number 2, Page 637
[13]
Chris W. Hughes, Rory J. Bingham, Vassil Roussenov, Joanne Williams, and Philip L. Woodworth
Geophysical Research Letters, 2015, Volume 42, Number 2, Page 466

Comments (0)

Please log in or register to comment.
Log in