Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Sjöberg, Lars

1 Issue per year

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Millimeter-accuracy GPS landslide monitoring using Precise Point Positioning with Single Receiver Phase Ambiguity (PPP-SRPA) resolution: a case study in Puerto Rico

G. Q. Wang
  • Corresponding author
  • Department of Earth and Atmospheric Sciences, National Center for Airborne Laser Mapping, University of Houston, Houston, TX 77004
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-04-30 | DOI: https://doi.org/10.2478/jogs-2013-0001

Abstract

Continuous Global Positioning System (GPS) monitoring is essential for establishing the rate and pattern of superficial movements of landslides. This study demonstrates a technique which uses a stand-alone GPS station to conduct millimeter-accuracy landslide monitoring. The Precise Point Positioning with Single Receiver Phase Ambiguity (PPP-SRPA) resolution employed by the GIPSY/OASIS software package (V6.1.2) was applied in this study. Two-years of continuous GPS data collected at a creeping landslide were used to evaluate the accuracy of the PPP-SRPA solutions. The criterion for accuracy was the root-mean-square (RMS) of residuals of the PPP-SRPA solutions with respect to “true” landslide displacements over the two-year period. RMS is often regarded as repeatability or precision in GPS literature. However, when contrasted with a known ”true” position or displacement it could be termed RMS accuracy or simply accuracy. This study indicated that the PPP-SRPA resolution can provide an accuracy of 2 to 3 mm horizontally and 8 mm vertically for 24-hour sessions with few outliers (< 1%) in the Puerto Rico region. Horizontal accuracy below 5 mm can be stably achieved with 4-hour or longer sessions if avoiding the collection of data during extreme weather conditions. Vertical accuracy below 10 mm can be achieved with 8-hour or longer sessions. This study indicates that the PPP-SRPA resolution is competitive with the conventional carrier-phase double-difference network resolution for static (longer than 4 hours) landslide monitoring while maintaining many advantages. It is evident that the PPP-SRPA method would become an attractive alternative to the conventional carrier-phase double-difference method for landslide monitoring, notably in remote areas or developing countries.

Keywords: accuracy; GPS; landslide monitoring; precise point positioning; single receiver phase ambiguity

  • Bar-Sever Y. E., Kroger P. M. and Borjesson J. A., 1998, Estimating horizontal gradients of tropospheric path delay with a single GPS receiver, J. Geophys. Res., 103, 5019-5035.Google Scholar

  • Bertiger W., Desai S. D., Haines B., Harvey N., Moore A. W., Owen S. and Weiss J. P., 2010, Single receiver phase ambiguity resolution with GPS data, J. Geod., 84, 327-337, DOI:10.1007/s00190-010-0371-9.CrossrefGoogle Scholar

  • Blewitt G., 1989, Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km, J. Geop. Res., 94, 10,187-10,203.Google Scholar

  • Boehm J., Niell A., Tregoning P. and Schuh H., 2006, Global mapping function (GMF): a new empirical mapping function based on numerical weather model data, Geopgys. Res. Lett., 33, L07304, DOI:10.1029/2005/GL025546.CrossrefGoogle Scholar

  • Bruckl E., Brunner F. K. and Kraus K., 2006, Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data, Eng. Geol., 88, 149-159.Google Scholar

  • Clark Hughes J., Banks J. A., Kerkhoff A. J., Tolman B. W. and Wyant J. R., 2006, ION GNSS 19th international technical meeting of the satellite division, 26-29 September, 2006, Fort Worth, TX, 2743-2753.Google Scholar

  • Collins P., 2008, Isolating and estimating undifferenced GPS integer ambiguities, Proceedings of ION National Technical Meeting, 28-30 September, San Diego, CA.Google Scholar

  • Dach R., Hugentobler U., Fridez P. and Meindl M., 2007, Bernese GPS software version 5.0, Astronomical Institute, University of Bern, Bern, 612pp.Google Scholar

  • Dodson A. H., Shardlow P. J., Hubbard L. C. M., Elgered G. and Jarlemark P. O. J., 1996, Wet tropospheric effects on precise relative GPS height determination, J. Geodes., 70, 188-202.Google Scholar

  • Dow J. M., Neilan R. E. and Rizos C., 2009, The international GNSS service in a changing landscape of Global Navigation Satellite Systems, J. Geod., 83,191-198.Google Scholar

  • Ebner R. and Featherstone W. E., 2008, How well can online GPS PPP post-processing services be used to establish geodetic survey control networks? J. Appl. Geod., 2, 149-157.Google Scholar

  • Eckl M. C., Snay R. A., Soler T., Cline M. W. and Mader G. L., 2001, Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration, J. Geod., 75, 633-640.Google Scholar

  • Firuzabadi D. and King R. W., 2011, GPS precision as a function of session duration and reference frame using multi-point software, GPS Solut., 16, 191-196, DOI: 10.1007/s10291-011-0218-8.CrossrefGoogle Scholar

  • Gregorius T. and Blewitt G., 1998, The effect of weather fronts on GPS measurements, GPS World, 9, 52-60.Google Scholar

  • Ge M., Gendt G., Rothacher M., Shi C. and Liu J., 2007, Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations, J. Geod., 82, 7, 389-399.Google Scholar

  • Ge M., Gendt G., Rothacher M., Shi C., and Liu J., 2008, Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations, J. Geod., 82, 389-399.Google Scholar

  • Geng J., Teferle F. N., Shi C., Meng X., Dodson A. H. and Liu J., 2009, Ambiguity resolution in precise point positioning with hourly data, GPS Solut., 13, 263-270.CrossrefGoogle Scholar

  • Geng J., Meng X., Teferle F. N. and Dodson A. H., 2010a, Performance of precise point positioning with ambiguity resolution for to 4-hour observation periods, Surv. Rev. 42,155-165.Google Scholar

  • Geng J., Meng X., Dodson A. H. and Teferle F. N., 2010b, Integer ambiguity resolution in precise point positioning: method comparison, J. Geod., 84, 569-581, DOI: 10.1007/s00190-010-0399-x.CrossrefGoogle Scholar

  • Goad C., 1985, Precise relative positioning determination using global positioning system carrier phase measurements in a nondifferenced mode, Proc., 1st Int. Symp. on Precise Positioning System with the Global Positioning System, U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Silver Spring, MD, 347-356.Google Scholar

  • Gregorius T. and Blewitt G., 1998, The effect of weather fronts on GPS measurements, GPS World, 9, 52-60.Google Scholar

  • Grinter T. and Janssen V., 2012, Post-processed precise point positioning: a viable alternative? Proc. APAS2012, Wollongong, Australia, 19-21 March, 83-92 (http://www.lpi.nsw.gov.au/surveying/corsnet-nsw/education_and_research, last access on September 10, 2012).Google Scholar

  • Grinter T. and Roberts C., 2011, Precise point positioning: where are we now? Proc. IGNSS2011, Sydney, Australia, 15-17 November, 15pp. (http://www.ignss.org/Conferences/PastPapers/tabid/64/Default. aspx, last access on September 20, 2012).Google Scholar

  • Hastaoglu K. O. and Sanli D. U., 2011, Monitoring Koyulhisar landslide using rapid static GPS: a strategy to remove biases from vertical velocities, Nat. Hazards, 58, 1275-1294.Google Scholar

  • Herring T. A., King R. W. and McCluskey S. M., 2009, Introduction to GAMIT/GLOBK, release 10.35, Mass. Instit. of Tech., Cambridge.Google Scholar

  • Hofmann-Wellenhof B., Lichtenegger H. and Collins J., 2001, Global Positioning System: Theory and Practice, 5th ed. New York: Springer Verlag Wien.Google Scholar

  • Hugentobler U., Dach R., Fridez P. and Meindl M. (eds), 2006, Bernese GPS software version 5.0 Draft. Astronomical Institute University of Berne, pp 574.Google Scholar

  • Iwabuchi T., Miyazaki S., Heki K., Naito I., and Hatanaka Y., 2003, An impact of estimating tropospheric delay gradients on tropospheric delay estimations in the summer using the Japanese nationwide GPS array, J. Geophys. Res., 108, ACL10/1-16.Google Scholar

  • Jibson R. W., 1986, Evaluation of landslide hazards resulting from the 5-8 October 1985 storm in Puerto Rico, U.S. Geological Survey Open-File Report, 86-26.Google Scholar

  • Jibson R. W., 1989, Debris flows in southern Puerto Rico, Geol. Soc. Am., Special paper 236, 29-55.Google Scholar

  • Kedar S., Hajj G. A., Wilson, B. D. and Heflin M. B., 2003, The effect of the second order GPS ionospheric correction on receiver positions, Geophys. Res. Lett., 30, 1829, doi:10.1029/2003GL017639.CrossrefGoogle Scholar

  • Kouba J., 2005, A possible detection of the 26 December 2004 great Sumatra-Andaman Islands earthquake with solution products of the int. GNSS service, Studia Geophysica et Geodaetica, 49, 463-383.Google Scholar

  • Kouba J. and Springer T., 2001, New IGS station and satellite clock combination, GPS Solut. 4, 31-36.CrossrefGoogle Scholar

  • Laurichesse D. and Mercier F., 2007, Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP, Proceedings of ION-GNSS-2007, Fort Worth, Texas, 25-28 September, 839-848.Google Scholar

  • Laurichesse D., Mercier F., Berthias J. P., Broca P., and Cerri L., 2009, Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and Its Application to PPP and Satellite Precise Orbit Determination, Navigation, J. Inst. Navig., 56, 135-149.Google Scholar

  • Leick A., 2003, GPS Satellite Surveying, 3rd ed. New York: John Wiley and Sons.Google Scholar

  • Miyazaki S., Iwabuchi T., Heki K. and Naito I., 2003, An impact of estimating tropospheric delay gradients on precise positioning in the summer using the Japanese nationwide GPS array, J. Geophys. Res., 108, 2335-2346.Google Scholar

  • Peyret M., Djamour Y., Rizza M., Ritz J. F., Hurtrez J. E., Goudarzi M. A., Nankali H., Chery J., Le Dortz K., and Uri F., 2008, Monitoring of the large slow Kahrod landslide in Alboz mountain range (Iran) by GPS and SAR interferometry, Eng. Geol., 100, 131-141.Google Scholar

  • Psimoulis P., Ghilardi M., Fouache E. and Stiros S., 2007, Subsidence and evolution of the Thessaloniki plain, Greece, based on historical leveling and GPS data, Eng. Geol., 90, 55-70.CrossrefGoogle Scholar

  • Ray J., Dong D. and Altamimi Z., 2004, IGS reference frames: status and future improvements, GPS Solut., 8, 251-266.CrossrefGoogle Scholar

  • Rizos C., Janssen V., Roberts C. and Grinter T., 2012, Precise Point Positioning: Is the Era of differential GNSS positioning drawing to an end?, TS09B, FIG Working Week 2012, Knowing to manage the territory, protect the environment, evaluate the culture heritage, Rome, Italy, 6-10, May 2012.Google Scholar

  • Rocken C., Hove T. V., Johnson J., Solheim F. and Ware R., 1995, GPS/STORM-GPS sensing of atmospheric water vapor for meteorology, J. Atmos. Ocean. Technol., 12, 468-478.CrossrefGoogle Scholar

  • Schenewerk M. and Hilla S., 1999, PAGES: Program for Adjustment of GPS Ephemerides, http://www.ngs.noaa.gov/GRD/GPS/DOC/pages/inp.html (last access date: September 20, 2012).Google Scholar

  • Schuster R. L. and Highland L. M., 2001, Socioeconomic and Environmental Impacts of Landslides in the Western Hemisphere: US Geological Survey Open-File Report 01-0276, pp.47.Google Scholar

  • Soler T., Michalak P., Weston N. D., Snay R. A. and Foote R. H., 2006, Accuracy of OPUS solution for 1- to 4-h observing sessions, GPS Solut., 10, 45-55.CrossrefGoogle Scholar

  • Spiker E. C. and Gori P. L., 2003, National landslide hazards mitigation strategy-a framework for loss reduction, U.S. Geological Survey, Circular 1244, 56 p.Google Scholar

  • Tagliavini F., Mantovani M., Marcato G., Pasuto A. and Silvano S., 2007, Validation of landslide hazard assessment by means of GPS monitoring technique-a case study in the Dolomites (Eastern Alps, Italy), Nat. Hazards Earth Syst. Sci., 7, 185-193.Google Scholar

  • Teferle F. N., Orliac E. J. and Bingley R. M., 2007, An assessment of Bernese GPS software precise point positioning using IGS final products for global site velocities, GPS Solut., 11, 205-213, DOI 10.1007/s10291-006-0051-7.CrossrefGoogle Scholar

  • Wang G., 2011, GPS Landslide Monitoring: Single Base vs.Google Scholar

  • Network Solutions - A case study based on the Puerto Rico and Virgin Islands Permanent GPS Network, J. Geodetic Science, 1, 191-203.Google Scholar

  • Wang G., 2012, Kinematics of the Cerca del Cielo, Puerto Rico landslide derived from GPS observations, Landslides, 9, 117-130, DOI: 10.1007/s10346-011-0277-5.CrossrefGoogle Scholar

  • Wang G., Phillips D., Joyce J. and Rivera F. O., 2011, The integration of TLS and Continuous GPS to study landslide deformation: a case study in Puerto Rico, J. Geodetic Sci., 1, 25-34. DOI: 10.2478/v10156-010-0004-5.CrossrefGoogle Scholar

  • Wang G. and Soler T., 2012, OPUS for horizontal subcentimeteraccuracy landslide monitoring: case study in the Puerto Rico and Virgin Islands region. J. Surv. Eng., 133, 143-153, DOI:10.1061/(ASCE)SU.1943-5428.0000079.CrossrefGoogle Scholar

  • Webb F. H. and Zumberge J. F., 1997, An introduction to GIPSY/OASIS II, JPL Publication D-11088.Google Scholar

  • Zumberge J., Heflin M., Jefferson D., Watkins M. and Webb F., 1997, Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res. 102, 5005-5017. Google Scholar

About the article

Published Online: 2013-04-30

Published in Print: 2013-03-01


Citation Information: Journal of Geodetic Science, ISSN (Print) 2081-9943, DOI: https://doi.org/10.2478/jogs-2013-0001.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xin Zhou, Guoquan Wang, Yan Bao, Lin Xiong, Veronica Guzman, and Timothy J. Kearns
Journal of Surveying Engineering, 2017, Volume 143, Number 4, Page 04017008
[2]
Guoquan Wang, Michael Turco, Tomás Soler, Timothy J. Kearns, and Jennifer Welch
Journal of Surveying Engineering, 2017, Volume 143, Number 4, Page 05017005
[3]
Remote Sensing, 2017, Volume 9, Number 7, Page 651
[5]
Jean Christophe Kucwaj, Georges Stienne, Serge Reboul, Jean-Bernard Choquel, and Mohammed Benjelloun
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Volume 9, Number 10, Page 4854
[6]
Mara Branzanti, Gabriele Colosimo, and Augusto Mazzoni
Advances in Space Research, 2017, Volume 59, Number 11, Page 2750
[7]
Linqiang Yang, Guoquan Wang, Victor Huérfano, Christa G. von Hillebrandt-Andrade, Jose A. Martínez-Cruzado, and Hanlin Liu
Natural Hazards, 2016, Volume 83, Number 1, Page 641
[8]
J. Yu and G. Wang
Survey Review, 2017, Volume 49, Number 352, Page 51
[9]
Tomás Soler and Guoquan Wang
Journal of Surveying Engineering, 2016, Volume 142, Number 4, Page 05016003
[10]
Linqiang Yang, Guoquan Wang, Yan Bao, Timothy J. Kearns, and Jiangbo Yu
Journal of Surveying Engineering, 2016, Volume 142, Number 3, Page 05015006
[12]
Timothy J. Kearns, Guoquan Wang, Yan Bao, Jiajun Jiang, and Dongje Lee
Journal of Surveying Engineering, 2015, Volume 141, Number 4, Page 05015002
[13]
Guoquan Wang and Tomás Soler
Journal of Surveying Engineering, 2013, Volume 139, Number 3, Page 126
[14]
Guoquan Wang, Yan Bao, Yanet Cuddus, Xueyi Jia, John Serna, and Qi Jing
Natural Hazards, 2015, Volume 77, Number 3, Page 1939
[15]
Guoquan Wang and Tomás Soler
Journal of Surveying Engineering, 2015, Volume 141, Number 2, Page 05014004
[17]
Guoquan Wang, Jiangbo Yu, Timothy J. Kearns, and Jesse Ortega
Journal of Surveying Engineering, 2014, Volume 140, Number 3, Page 05014001
[18]
Guoquan Wang, Timothy J. Kearns, Jiangbo Yu, and Gabriel Saenz
Landslides, 2014, Volume 11, Number 1, Page 119

Comments (0)

Please log in or register to comment.
Log in