Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Sjöberg, Lars

1 Issue per year

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Closed-form and iterative weighted least squares solutions of Helmert transformation parameters

L.E. Sjöberg
  • Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), SE 10044, Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-04-30 | DOI: https://doi.org/10.2478/jogs-2013-0002

Abstract

The Helmert transformation is the most common transformation between different geodetic systems. In 2-D, in contrast to higher dimensions, it is a well-known procedure how to determine the 4 transformation parameters in a closed form. Here we derive the closed-form weighted least squares solution in m-dimensional space for an arbitrary number (≥ m) of coordinate set-ups in two related systems. The solution employs singular value decomposition (SVD) for the rotation matrix, while the translation vector and scale parameters are obtained in simpler ways. To avoid the SVD routine, we also present an iterative approach to solve for the rotation matrix. The paper is completed with a test procedure for detecting outlying coordinate pairs.

Keywords: Helmert transformation; Procrustes problem; registration; singular value decomposition

  • Awange J.L., Grafarend E.W., Paláncz B. and Zaletnyik P., 2010, Algebraic Geodesy and Geoinformatics, 2nd ed., Springer Verlag, Berlin HeidelbergWeb of ScienceGoogle Scholar

  • Bjerhammar A., 1973, Theory of errors and generalized matrix inverses, Elsevier Publ. Co., Amsterdam and New York.Google Scholar

  • Crosilla F., 2003, Procrustes analysis and geodetic science. In: Grafarend, E. W., Krumm, F. W., Schwarze, V. S. (Eds.), 2003, Geodesy - The Challenge of the Third Millenium, Springer, pp. 287-292Google Scholar

  • Grafarend E. W. and Awange J. L., 2003, Nonlinear analysis of the three-dimensional datum transformation conformal group C7 (3), J Geod. 77, 66-76Google Scholar

  • Helmert F.R., 1924, Ausgleichungsrechnung nach der Methode der kleinsten Quadrate mit Anwendungen auf die Geodäsie, die Physik und die Theorie der Messinstrumente, 3rd edition, Leipzig and BerlinGoogle Scholar

  • Horn B. K. P., 1987, Closed-form solution of absolute orientation using orthonormal matrices, J. Opt. Soc. Amer. A, 5, 7, 1127-1135Google Scholar

  • Lissitz, R. W., Schönemann P. H. and Lingoes J. C., 1976, A solution to the weighted Procrustes problem in which the transformation is in agreement with the loss function. Psychometrika 41, 4, 547-550CrossrefGoogle Scholar

  • Myronenko A. and Song X., 2009, On the closed-form solution of the rotation matrix arising in computer vision problems, arXiv:0904.1613v1 [cs.CV]Google Scholar

  • Schönemann P. H., 1966, Generalised solution of the orthogonal Procrustes problem, Psychometrika 31, 1-10CrossrefGoogle Scholar

  • Schönemann P. H. and Carroll R. M., 1970, On fitting one matrix to another under choice of a central dilation and a rigid motion. Psychometrika 35, 245-255CrossrefGoogle Scholar

  • Späth H., 2003, Identifying spatial point sets, Math. Com. 8, 69-75Google Scholar

  • Späth H., 2004, A numerical method for determining the spatial Helmert transformation in case of different scale factors, Zeitschr. f. Verm. 129, 255-259Google Scholar

  • Umeyama S., 1991, Least-squares estimation of transformation parameters between two point patterns, IEEE Transactions on pattern analysis and machine intelligence, 13, 4, 376-380Google Scholar

  • Watson G. A., 2006, Computing Helmert transformations, J. Comp. and Appl. Maths. 197, 2, 387-394 Google Scholar

About the article

Published Online: 2013-04-30

Published in Print: 2013-03-01


Citation Information: Journal of Geodetic Science, ISSN (Print) 2081-9943, DOI: https://doi.org/10.2478/jogs-2013-0002.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
B. Paláncz, J. Awange, and L. Völgyesi
Australian Journal of Earth Sciences, 2017, Volume 64, Number 4, Page 565

Comments (0)

Please log in or register to comment.
Log in