Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Sjöberg, Lars

1 Issue per year

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Examination of two major approximations used in the scalar airborne gravimetric system — a case study based on the LCR system

X. Li
Published Online: 2013-04-30 | DOI: https://doi.org/10.2478/jogs-2013-0004

Abstract

Airborne gravimetry has been proved to be the primary technique to efficiently obtain middle to short wavelength signals of the Earth’s gravity field in regional geodetic applications. In particular, the LCR (LaCoste & Romberg) based scalar system (i.e., only measuring the vertical component of the gravity) is widely used or still in use for regional geoid improvements. In various aspects, many previous publications have shown positive contributions from the airborne gravity data obtained from such a system. However, the system equation used in these publications has several unnecessary or unclear approximations. By using the exact formulas and realistic data sets, the numerical analysis in this paper clearly shows that: 1) the higher order terms in the Eötvös correction neglected by Harlan (1968) are rather small (in μGal level), but are systematic mainly depending on latitude and height; 2) neglecting the roll and pitch angles can cause up to hundreds of mGal errors in the raw (unfiltered) gravity measurements if the lever-arm is not set up appropriately; 3) large (200s) smoothing windows have to be applied to reduce the lever-arm noise into sub-mGal level; 4) even under strong lever-arm setup conditions, i.e., no “horizontal offset” between the GPS antenna and the gravimeter, accurate (10 arc-minute ∼ 5 arc-minute) attitude angles from IMU (Inertial Measurement Units) are required to keep the lever-arm noise in sub-mGal level in the raw observables

Keywords: Eötvös Correction; Inertial Measurement Units; Lever-arm Correction; Scalar Airborne Gravimetry

  • Brozena J.M. and Peters M.F.. 1988. An airborne gravity study of eastern North Carolina Geop.. 53,2.245-253.Google Scholar

  • de Saint-Jean B.. Verdun J, Duquenne H.. Barriot J.P. Melachroinos S. and Cali J., 2007, Fine analysis of lever arm effects in moving gravimetry. In: Tregoning P and Rizos C, (eds.), Proc. of Dynamic Planet - Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools, volume 130 of IAG Symposia, pages 809-816, Cairns, Australia.Google Scholar

  • Forsberg R., Olesen A.V., Keller K. and Moller M., 2001, Airborne gravity and geoid surveys in the Arctic and Baltic seas, Proc., Int. Sym. on Kinematic Systems in Geodesy, Geom. and Navi., Banff, Canada, pp 586-593.Google Scholar

  • Harlan R.B., 1968, Eötvös correction for airborne gravimetry, J. Geop. Res., 73, 14, 4675-4679.Google Scholar

  • Heiskanen W.A., and Moritz H., 1967, Physical Geodesy. W.H. Freeman and Company, San Francisco, California and London.Google Scholar

  • Jekeli C., 2000, Inertial Navigation Systems with Geodetic Applications, W. deGruyter, Berlin, 2000.Google Scholar

  • Kwon J.H. and Jekeli C., 2001, A new approach for airborne vector gravimetry using GPS/INS, J Geod., 74, 10, 690-700.Google Scholar

  • Li X., 2007, Moving base INS/GPS vector gravimetry on a land vehicle. PhD dissertation, OSU report 486.Google Scholar

  • Li X. and Jekeli C., 2008, Ground-Vehicle INS/GPS Gravimetry, Geop., 73, 2, I1-I10.Google Scholar

  • Li X., 2011a, Strapdown INS/DGPS airborne gravimetry tests in the Gulf of Mexico, J Geod., 85, 9, 597-605, DOI: 10.1007/s00190-011-0462-2.CrossrefWeb of ScienceGoogle Scholar

  • Li X., 2011b, An Exact Formula for the Tilt Correction in Scalar Airborne Gravimetry, J Appl. Geod., 5, 2, 81-85, DOI: 10.1515/JAG.2011.007.CrossrefGoogle Scholar

  • Melachroinos S.A., Tchalla M., Biancale R. and Menard Y., 2010, Removing attitude-related variations in the line-of-sight for kinematic GPS positioning, GPS Solu., 15, 3, 275-285.Web of ScienceGoogle Scholar

  • Olesen A.V., 2003, Improved Airborne Scalar Gravimetry for Regional Gravity Field Mapping and Geoid Determination. Technical Report no 24, Kort og Matrikels Styrelsen, Copenhagen.Google Scholar

  • Rummel R., 1979, Determination of short-wavelength components of the gravity field from satellite-to-satellite tracking or satellite gradiometry-an attempt to an identification of problem areas, Manu. Geod. 4, 2, 107-148.Google Scholar

  • Sander L. and Ferguson S., 2010, Advances in SGL AIRGrav acquisition and processing, ASEG (Australian Society of Exploration Geophysicists) Conference, Sydney, Australia.Google Scholar

  • Sander S., Sander L. and Ferguson S., 2011, SGL AIRGrav Anomaly Detection from Modeling and Field Data using Advanced Acquisition and Processing, Sander Geophysics, GEM (International Workshop on Gravity, Electrical and Magnetic Methods), Beijing, China.Google Scholar

  • Smith D.A., 2007, The GRAV-D Project: Gravity for the Redefinition of the American Vertical Datum, NOAA/National Geodetic Survey: http://www.ngs.noaa.gov/grav-d/pubs/GRAVD_v2007_12_19.pdf (accessible by Oct 2011).Google Scholar

  • Studinger M., Bell R. and Frearson N., 2008, Comparison of AIRGrav and GT-1A airborne gravimeters for research applications. Geop., 73, 6, 151-161.Google Scholar

  • Valliant H., 1992, The LaCoste & Romberg air/sea gravimeter: an overview: In: CRC Handbook of Geophysical Exploration at Sea, 2nd Edition, Volume 1, 141-176. Boca Raton Press.Google Scholar

  • Verdun J., 2000, La gravimétrie aéroportée en région montagneuse; Exemple de levé franco-suisse sur les Alpes Occidentales. Thése pour obtenir le grade de Docteur de Université Montpellier II, FranceGoogle Scholar

  • Wahr J., 1996, Geodesy and Gravity. Department of Physics, University of Colorado, Boulder, CO, Samizdat Press. Google Scholar

About the article

Published Online: 2013-04-30

Published in Print: 2013-03-01


Citation Information: Journal of Geodetic Science, ISSN (Print) 2081-9943, DOI: https://doi.org/10.2478/jogs-2013-0004.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Detang Zhong, Theresa Marie Damiani, Sandra Ann Martinka Preaux, and Robert William Kingdon
GEOPHYSICS, 2015, Volume 80, Number 4, Page G107

Comments (0)

Please log in or register to comment.
Log in