Butcher J. C., 1987, The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods, Wiley, New York.

Deakin R. E. and Hunter M. N., 2008, Geometric Geodesy - Part A, Lecture Notes, School of Mathematical & Geospatial Sciences, RMIT University, Melbourne, Australia.

Deakin R. E. and Hunter M. N., 2010, Geometric Geodesy - Part B, Lecture Notes, School of Mathematical & Geospatial Sciences, RMIT University, Melbourne, Australia.

Feltens J., 2009, Vector method to compute the Cartesian (X, Y , Z) to geodetic (Φ, λ, h) transformation on a triaxial ellipsoid, J. Geod., 83, 129-137. [Web of Science]

Fox L., 1990, The numerical solution of two-point bound ary problems in ordinary differential equations, Dover, New York.

Hildebrand F. B., 1974, Introduction to numerical analysis, 2nd ed., Dover, New York.

Jank W. and Kivioja L. A., 1980, Solution of the direct and inverse problems on reference ellipsoids by point-by-point integration using programmable pocket calculators, Surveying and Mapping, 15, 325-337.

Karney C. F. F. and Deakin R. E., 2010, F.W. Bessel (1825): The calculation of longitude and latitude from geodesic measurements, Astron. Nachr., 331, 852-861. [Web of Science]

Karney C. F. F., 2013, Algorithms for geodesics, J. Geod., 87, 43-55.

Keller H. B., 1992, Numerical methods for two-point boundaryvalue problems, Dover, New York.

Kivioja L. A., 1971, Computation of geodetic direct and indirect problems by computers accumulating increments from geodetic line elements, Bull. Geod., 99, 55-63.

Ligas M., 2012a, Cartesian to geodetic coordinates conversion on a triaxial ellipsoid, J. Geod., 86, 249-256. [Web of Science]

Ligas M., 2012b, Two modified algorithms to transform Cartesian to geodetic coordinates on a triaxial ellipsoid, Stud. Geoph. Geod., 56, 993-1006.

Logan J. D., 2006, Applied mathematics, 3rd ed., Wiley- Interscience, New Jersey.

Moritz H., 1980, Geodetic Reference System 1980, Bull. Geod., 54, 395-405.

Rapp R. H., 1984, Geometric Geodesy - Part I, Department of Geodetic Science and Surveying, Ohio State University, Columbus, Ohio, USA.

Rapp R. H., 1993, Geometric Geodesy - Part II, Department of Geodetic Science and Surveying, Ohio State University, Columbus, Ohio, USA.

Saito T., 1970, The computation of long geodesics on the ellipsoid by non-series expanding procedure, Bull. Geod., 98, 341-373.

Sjöberg L. E., 2007, Precise determination of the Clairaut constant in ellipsoidal geodesy, Surv. Rev., 39, 81-86. [Web of Science]

Sjöberg L. E. and Shirazian M., 2012, Solving the direct and inverse geodetic problems on the ellipsoid by numerical integration, J. Surv. Eng., 138, 9-16. [Web of Science]

Struik, D. J., 1961, Lectures on classical differential geometry, 2nd ed., Dover, New York.

Thomas C. M. and Featherstone W. E., 2005, Validation of Vincenty’s formulas for the geodesic using a new fourth-order extension of Kivioja’s formula, J. Surv. Eng., 131, 20-26. van Brunt B., 2004, The calculus of variations, Springer- Verlag, New York.

Vincenty T., 1975, Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations, Surv. Rev., 23, 88-93.

## Comments (0)