Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
See all formats and pricing
More options …

Analysis of signals of a borehole strainmeter in the western rift of Corinth, Greece

A. Canitano
  • Corresponding author
  • Institut de Physique du Globe de Paris, France by Équipe Sismologie, Institut de Physique du Globe de Paris-CNRS, 1 rue Jussieu, 75238 Paris, France - University Paris Diderot 7, PRES Sorbonne Paris Cité, Paris, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Bernard
  • Institut de Physique du Globe de Paris, France by Équipe Sismologie, Institut de Physique du Globe de Paris-CNRS, 1 rue Jussieu, 75238 Paris, France - University Paris Diderot 7, PRES Sorbonne Paris Cité, Paris, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. T. Linde / S. Sacks
Published Online: 2013-04-30 | DOI: https://doi.org/10.2478/jogs-2013-0011


This paper presents the first analysis of the records of an elliptical 3-component Sacks-Evertson borehole strainmeter. This highresolution prototype by the Carnegie Institution of Washington, is installed since 2006 in the western rift of Corinth, Greece. We first present the calibration and the correction from external influences, in order to quantify the detection level of the instrument. We show evidence for pore pressure diffusion from the sea, mostly affecting one component. Neglecting this effect, a first order correction reduces the signal by 90% at tidal periods for 2 components and about 70% for the third one. The residual noise vary from 1 nstrain at 1-hour period to 10 nstrain at 1-day period. It allows to detect slow earthquakes lasting 1 day down to magnitude 4 at an hypocentral distance of 8 kilometers. The uncorrected records at periods smaller than semidiurnal does not reveal any slow strain transient with strong amplitude. During the closest seismic swarm to the site in 2011, the analysis of the records reveals strain steps occuring at the arrival times of seismic waves radiated by the local earthquakes, uncorrelated with the amplitudes and mostly related to dynamic pore pressure instabilities.

Keywords: high strain deformation zones; fractures and faults; tides and planetary waves; instrumental noise; external forcing correction

  • Armijo R., Meyer B., King G. C. P., Rigo A., Papanastassiou D., 1996, Quaternary evolution of the Corinth rift and its for the late cenozoic evolution of the Aegean. Geophys. J. Int. 126, 11-53.Google Scholar

  • Avallone A., Briole P., Agatza-Balodimiou A., Billiris H., Charade O., Mitsakaki C., Nercessian A., Papazissi K., Paradissis D., Veis G., 2004, Analysis of eleven years of deformation measured by GPS in the Corinth Rift Laboratory area. C. R. Geoscience 336, 301-311.Google Scholar

  • Bernard P., Briole P., Meyer B., Lyon-Caen H., Gomez J.-M., Tiberi C., Berge C., Cattin R., Hatzfeld D., Lachet C., Lebrun B., Deschamps A., Courboulex F., Laroque C., Rigo A., Massonnet D., Papadimitriou P., Kassaras J., Diagourtas D., Makropoulos K., Veis G., Papazisi E., Mitsakaki C., Karakostas V., Papadimitriou P., Papanastassiou D., Chouliaras G., Stavrakakis G., 1997, The Ms = 6.2, June 15, 1995 Aigion earthquake (Greece): evidence for low angle normal faulting in the Corinth rift. Journal of Seismology 1, 131-150.Google Scholar

  • Bernard P., Charara R., Serpetsidaki A., Briole P., Diagourtas D., 2010, Embedded time scales of slip transients on the Psatopyrgos fault system, western rift of Corinth,Greece. ESC Meeting, Montpellier.Google Scholar

  • Bernard P., Lyon-Caen H., Briole P., Deschamps A., Boudin F., Makropoulos K., Papadimitriou P., Lemeille F., Patau G., Billiris H., Paradissis D., Papazissi K., Castarède H., Charade O., Nercessian A., Avallone A., Pacchiani F., Zahradnik J., Sacks S., Linde A., 2006, Seismicity, deformation and seismic hazard in the western rift of Corinth: New insights from the Corinth Rift Laboratory (CRL). Tectonophysics 426, 7-30.Google Scholar

  • Boudin F., 2004, Développement d’un inclinomètre hydrostatique à double niveau, et application au Golfe de Corinthe, Grèce. Ph. D. thesis, Institut de Physique du Globe, Paris.Google Scholar

  • Bourouis S., Bernard P., 2007, Evidence for coupled seismic and aseismic fault slip during water injection in the geothermal site of Soultz (France), and implications for seismogenic transients. Geophys. J. Int. 169, 723-732.Web of ScienceGoogle Scholar

  • Briole P., Rigo A., Lyon-Caen H., Ruegg J. C., Papazissi K., Mitsakaki C., Balodimou A., Veis G., Hatzfeld D., Deschamps A., 2000, Active deformation of the Corinth rift, Greece: Results from repeated Global Positioning System surveys between 1990 and 1995. J. Geophys. Res. 105, 25605-25626.Google Scholar

  • Canitano A., 2011, Analyse des influences externes et internes sur les mesures extensométriques en forage dans le rift de Corinthe (Grèce). Ph. D. thesis, Institut de Physique du Globe, Paris.Google Scholar

  • Crescentini L., Amoruso A., Fiocco G., Visconti G., 1997, Installation of a high-sensitivity laser strainmeter in a tunnel in central Italy. Rev. Sci. Instru. 68, 887-905.Google Scholar

  • Ide, S., G. C. Beroza, D. R. Shelly, and T. Uchide (2007). A scaling law for slow earthquakes. Nature 447, 76-79.Web of ScienceGoogle Scholar

  • Jaeger J. C., Cook N. G. W., 1976, Fundamentals of Rock Mechanics. Halsted Press, New York.Google Scholar

  • Lambotte S., Lyon-Caen H., Bernard P., Deschamps A., 2010, Microseismic activity and multiplets in the western part of the Corinth Rift (Greece). ESC Meeting, Montpellier.Google Scholar

  • Linde A. T., Gladwin M. T., Johnston M. J. S., Gwyther R. L., Bilham R. G., 1996, A slow earthquake sequence on the San Andreas fault. Nature 383, 65-68.Google Scholar

  • Lyon-Caen H., Bernard P., Deschamps A., Lambotte S., Briole P., 2010, The January-February 2010 Pyrgos (western Corinth Rift) seismic swarm: a possible activation of the deep Psatopyrgos normal fault (Western Corinth Rift)? ESC Meeting, Montpellier.Google Scholar

  • Lyon-Caen H., Papadimitriou P., Deschamps A., Bernard P., Makropoulos K., Pacchiani F., Patau G., 2004, First results of the CRLN seismic array in the western Corinth Gulf: evidence for old fault reactivation. C. R. Geoscience 336, 343-351.Google Scholar

  • Micarelli L., Moretti I., Daniel J. M., 2003, Structural properties of rift-related normal faults: the case of the Gulf of Corinth, Greece. Journal of Geodynamics 36, 275-303.Google Scholar

  • Nadeau R. M., Dolenc D., 2005, Nonvolcanic tremors deep beneath the San Andreas Fault, Science 307, 389.Google Scholar

  • Obara K., 2002, Nonvolcanic deep tremor associated with subduction in southwest Japan. Science 296, 1679-1681.Google Scholar

  • Obara K., Hirose H., 2006, Non-volcanic deep low-frequency tremors accompanying slow slips in the southwest Japan subduction zone. Tectonophysics 417, 33-51.Google Scholar

  • Okada Y., Kasahara K., Hori S., Obara K., Sekiguchi S., Fujiwara H., Yamamoto A., 2004, Recent progress of seismic observation networks in Japan - Hi-net, F-net, K-NET and KiK-net. Earth Planets Space 56, xv-xxviii.Google Scholar

  • Palyvos N., Mancini M., Sorel D., Lemeille F., Pantosti D., Julia R., Triantaphyllou M., De Martini P. M., 2010, Geomorphological, stratigraphic and geochronological evidence of fast Pleistocene coastal uplift in the westernmost part of the Corinth Gulf Rift (Greece). Geological Journal 45, 78-104,DOI: 10.1002/gj.1171.Web of ScienceCrossrefGoogle Scholar

  • Palyvos N., Pantosti D., Stamatopoulos L., De Martini P. M., 2007, Geomorphological reconnaissance of the Psathopyrgos and Rion-Patras fault zones (Achaia, NW Peloponnesus). Bull. Geolog. Soci. Greece, 1586-1598.Google Scholar

  • Rogers G., Dragert H., 2003, Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip. Science 300, 1942-1943.Google Scholar

  • Sacks S., Suyehiro S., Evertson D. W., Yamagishi Y., 1971, Sacks- Evertson strainmeter, its installation in Japan and some preliminary results concerning strain steps. Pap. Meteorol. Geophys. 22, 195-208.Google Scholar

  • Toda S., Stein R. S., Richards-Dinger K., Bozkurt S. B., 2005, Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer. J. Geophys. Res. 110, B05S16, doi:10.1029/2004JB003415.CrossrefGoogle Scholar

  • Wenzel H., 1995, The nanogal software:earth tide data processing package ETERNA 3.3. Bull. d’Inf. Marées Terr. 124, 9425-9439. Google Scholar

About the article

Published Online: 2013-04-30

Published in Print: 2013-03-01

Citation Information: Journal of Geodetic Science, Volume 3, Issue 1, Pages 63–76, ISSN (Print) 2081-9943, DOI: https://doi.org/10.2478/jogs-2013-0011.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alexandre Canitano, Maxime Godano, Ya-Ju Hsu, Hsin-Ming Lee, Alan T. Linde, and Selwyn Sacks
Journal of Geophysical Research: Solid Earth, 2018
A. Canitano, P. Bernard, A. T. Linde, S. Sacks, and F. Boudin
Pure and Applied Geophysics, 2014, Volume 171, Number 8, Page 1759

Comments (0)

Please log in or register to comment.
Log in