Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
See all formats and pricing
More options …

Inverting GRACE gravity data for local climate effects

D. Fischer
  • Geomathematics Group, Department of Mathematics, University of Siegen, 57076 Siegen, Germany, www.geomathematics-siegen.de
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ V. Michel
  • Corresponding author
  • Geomathematics Group, Department of Mathematics, University of Siegen, 57076 Siegen, Germany, www.geomathematics-siegen.de
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-15 | DOI: https://doi.org/10.2478/jogs-2013-0019


The Amazon area is the largest water shed on Earth. Thus, it is of great importance to observe the water levels regularly. The satellite mission Gravity Recovery and Climate Experiment (GRACE) allows, since its launch in 2002, a monthly global overview of the water distribution on Earth, in particular floods and droughts. In recent years, the Amazon area has experienced a number of extreme weather situations in late summer (July through October), explicitly a drought in 2005 and one in 2010. Furthermore, one can identify the remains of a flood in spring 2009 in the summer season of 2009 as well, where the names of the seasons refer here to the northern hemisphere, though some events were also located on the southern hemisphere. Here we present corresponding results with respect to a recently introduced localized method called the RFMP (Regularized Functional Matching Pursuit) that can be applied to ill-posed inverse problems. In comparison to the usual processing of GRACE data as well as other data types (i.e., the volumetric soil moisture content given by the NOAA-CIRES Twentieth Century Global Reanalysis Version II and the average layer 1 soil moisture given by the GLDAS Noah Land Surface Model L4), we gain an improved spatial resolution with the novel method. We also observe that it is very difficult to validate inverted GRACE data with hydrological models due to, e.g., discrepancies among these models.

Keywords: Amazon; density inversion; drought; flood; GRACE; inverse gravimetry; mass transport; signal localization; sparse regularization

  • Amirbekyan A. and Michel V., 2008, Splines on the threedimensional ball and their application to seismic body wave tomography, Inverse Probl., 24, 1-25.Web of ScienceGoogle Scholar

  • Berkel P., 2009, Multiscale methods for the combined inversion of normal mode and gravity variations, PhD thesis, Geomathematics Group, University of Kaiserslautern (Aachen: Shaker Verlag).Google Scholar

  • Berkel P. and Michel V., 2010, On mathematical aspects of a combined inversion of gravity and normal mode variations by a spline method, Math. Geosci., 42, 795-816.Web of ScienceGoogle Scholar

  • Chen J.L., Wilson C.R. and Tapley B.D., 2006, Satellite gravity measurements confirm accelerated melting of Greenland ice sheet, Science, 313, 1958-60.Google Scholar

  • Chen J.L., Wilson C.R. and Tapley B.D., 2010, The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE, Water Resour. Res., 46, W12526.Web of ScienceGoogle Scholar

  • Chen J.L., Wilson C.R., Tapley B.D., Blankenship D.D. and Young D., 2008, Antarctic regional ice loss rates from GRACE, Chen J.L., Wilson C.R., Tapley B.D. and Grand S., 2007, GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake, Geophys. Res. Lett., 34, L13302.Web of ScienceGoogle Scholar

  • Chen J.L., Wilson C.R., Tapley B.D., Yang Z.L. and Niu G.Y., 2009, 2005 drought event in the Amazon river basin as measured by GRACE and estimated by climate models, J. Geophys. Res., 114, B05404.Web of ScienceGoogle Scholar

  • Crowley J.W., Mitrovica J.X., Bailey R.C., Tamisiea M.E. and Davis J.L., 2006, Land water storage within the Congo Basin inferred from GRACE satellite gravity data, Geophys. Res. Lett., 33, L19402.Google Scholar

  • Fengler M.J., Freeden W., Kohlhaas A., Michel V. and Peters T., 2007, Wavelet modeling of regional and temporal variations of the Earth’s gravitational potential observed by GRACE, J. Geodesy, 81, 5-15.Web of ScienceGoogle Scholar

  • Fengler M.J., Michel D. and Michel V., 2006, Harmonic spline-wavelets on the 3-dimensional ball and their application to the reconstruction of the Earth’s density distribution from gravitational data at arbitrarily shaped satellite orbits, ZAMM, 86, 856-73.Google Scholar

  • Fischer D., 2011, Sparse regularization of a joint inversion of gravitational data and normal mode anomalies, PhD thesis, Geomathematics Group, University of Siegen (Munich: Verlag Dr. Hut).Google Scholar

  • Fischer D. and Michel V., 2012, Sparse regularization of inverse gravimetry - case study: spatial and temporal mass variations in South America, Inverse Probl., 28, 065012.Web of ScienceGoogle Scholar

  • Fischer D. and Michel V., 2013, Automatic best-basis selection for geophysical tomographic inverse problems, Geophys. J. Int., 193, 1291-1299.Web of ScienceGoogle Scholar

  • Freeden W., Gervens T. and Schreiner M., 1998, Constructive approximation on the sphere (with applications to geomathematics), Oxford University Press, Oxford.Google Scholar

  • Freeden W. and Windheuser U., 1996, Spherical wavelet transform and its discretization, Adv. Comput. Math., 5, 51-94. Google Scholar

  • Center for Space Research, 2012, GRACE overview, University of Texas (Austin). www.csr.utexas.edu/grace/overview.html, accessed 11 June 2012.Google Scholar

  • Hu X.G., Chen J.L., Zhou Y.H., Huang C. and Liao X.H., 2006, Seasonal water storage change of the Yangtze River basin detected by GRACE, Sci. China Ser. D Earth Sci., 49, 483-91.Google Scholar

  • Joodaki G. and Nahavandchi H., 2012, Mass loss of the Greenland ice sheet from GRACE time-variable gravity measurements, Stud. Geophys. Geod., 56, 197-214.Web of ScienceGoogle Scholar

  • JPL: Jet Propulsion Laboratory, California Institute of Technology (Pasadena). http://podaac.jpl.nasa.gov/grace/index.html, accessed 11 June 2012.Google Scholar

  • Koch K.R. and Kusche J., 2002, Regularization of geopotential determination from satellite data by variance components, J. Geodesy, 76, 259-268.Google Scholar

  • Kusche J., 2007, Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models, J. Geodesy, 81, 733-49.Web of ScienceGoogle Scholar

  • Kusche J., Schmidt R., Petrovic S. and Rietbroek R., 2009, Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model, J. Geodesy, 83, 903-13.Web of ScienceGoogle Scholar

  • Michel V., 2002, A multiscale approximation for operator equations in separable Hilbert spaces - case study: reconstruction and description of the Earth’s interior, habilitation thesis, Geomathematics Group, University of Kaiserslautern (Aachen: Shaker Verlag).Google Scholar

  • Michel V., 2010, Tomography: problems and multiscale solutions, in: Freeden W., Nashed M.Z. and Sonar T. (eds.) Handbook of Geomathematics, Heidelberg, Springer, pp. 949-72.Google Scholar

  • Michel V., 2013, Lectures on constructive approximation - Fourier, spline, and wavelet methods on the real line, the sphere, and the ball, Birkhäuser, Boston.Google Scholar

  • Michel V. and Fokas A.S., 2008, A unified approach to various techniques for the non-uniqueness of the inverse gravimetric problem and wavelet-based methods, Inverse Probl., 24, 045091.Web of ScienceGoogle Scholar

  • Rodell M. et al, 2004a, The global land data assimilation system, Bull. Am. Meteorol. Soc., 85, 381-94.Google Scholar

  • Rodell M., Familiglietti J.S., Chen J., Seneviratne S.I., Viterbo P., Holl S. and Wilson C.R., 2004b, Basin scale estimates of evaporation using GRACE and other observations, Geophys. Res. Lett., 31, L20504. CrossrefGoogle Scholar

  • Syed T.H., Famiglietti J.S., Chen J., Rodell M., Seneviratne S.I., Viterbo P. and Wilson C.R., 2005, Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land-atmosphere water balance, Geophys. Res. Lett., 32, L24404.CrossrefGoogle Scholar

  • Tapley B.D., Bettadpur S., Ries J.C., Thopson P.F. and Watkins M.M., 2004, GRACE measurements of mass variability in the Earth system, Science, 305, 503-5.Google Scholar

  • Wahr J., Swenson S. and Velicogna I., 2006, The accuracy of GRACE mass estimates, Geophys. Res. Lett., 33, L06401.CrossrefGoogle Scholar

  • Winsemius H.C., Savenije H.H.G., van de Giesen N.C., van den Hurk B.J.J.M., Zapreeva E.A. and Klees R., 2006, Assessment of gravity recovery and climate experiment (GRACE) temporal signature over the upper Zambezi, Water Resour. Res., 42, W12201.Google Scholar

  • Xu P., Shen Y., Fukuda, Y. and Liu, Y., 2006, Variance component estimation in linear inverse ill-posed models, J. Geodesy, 80, 69-81. Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2013-10-15

Published in Print: 2013-09-01

Citation Information: Journal of Geodetic Science, Volume 3, Issue 3, Pages 151–162, ISSN (Online) 2081-9943, ISSN (Print) 2081-9919, DOI: https://doi.org/10.2478/jogs-2013-0019.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Volker Michel and Roger Telschow
GEM - International Journal on Geomathematics, 2014, Volume 5, Number 2, Page 195

Comments (0)

Please log in or register to comment.
Log in