Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
See all formats and pricing
More options …

A stable reference frame for the study of ground deformation in the Houston metropolitan area, Texas

G. Wang
  • Corresponding author
  • National Center for Airborne Laser Mapping, Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77004
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Yu
  • National Center for Airborne Laser Mapping, Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77004
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Ortega
  • National Center for Airborne Laser Mapping, Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77004
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. Saenz
  • National Center for Airborne Laser Mapping, Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77004
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T. Burrough
  • National Center for Airborne Laser Mapping, Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77004
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Neill
  • National Center for Airborne Laser Mapping, Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77004
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-15 | DOI: https://doi.org/10.2478/jogs-2013-0021


A great number of GPS stations have been installed in the Houston, Texas area for studying ground deformation caused by subsidence, salt dome uplift, and fault creep. One major consideration in determining the magnitude and velocity of ground displacement over time using GPS, particularly for horizontal ground deformations, is the selection of reference frames. In this study, we define a Stable Houston Reference Frame (SHRF) using over 8-year of continuous data from 10 permanent GPS stations. These stations are located throughout Harries County and nearby counties, and cover an area of about 200,000 km2. The realization of SHRF is defined in terms of a Helmert transformation from the International GNSS (Global Navigation Satellite System) Reference Frame of 2008 (IGS08). SHRF is aligned with the IGS08 at epoch 2012.0. The velocities of these 10 frame stations are minimized to zero within the stable reference frame. The GIPSY/OASIS (V6.1.2) software package was used to calculate position coordinates within IGS08. The precise point positioning (PPP) daily solutions within SHRF achieve 2-3 mm horizontal accuracy and 6-7 mm vertical accuracy. The main results of this article include (1) accurate global (IGS08) positions and velocities of 10 selected frame sites, and (2) 14 parameters for reference frame transformation from IGS08 to SHRF. SHRF will be incrementally improved and be synchronized with the update of IGS reference frame.

Keywords: Fault creep; GPS; Helmert transformation; Houston; IGS08; Local reference frame; Subsidence

  • Bar-Sever Y. E., Kroger P. M. and Borjesson J. A., 1998, Estimating horizontal gradients of tropospheric path delay with a single GPS receiver, J. Geophys. Res., 103(B3), 5019-5035.Google Scholar

  • Bertiger W., Desai S. D., Haines B., Harvey N., Moore A. W., Owen S. and Weiss J. P., 2010, Single receiver phase ambiguity resolution with GPS data, J. Geodesy, 84(5), 327-337.CrossrefWeb of ScienceGoogle Scholar

  • Blewitt G., 1989, Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km, J. Geopys. Res., 94(B8), 10,187-10,203.Google Scholar

  • Blewitt G., 2008, Overview of the SNARF Working Group, its activities, and accomplishments, Report of the Ninth SNARF Workshop, http://www.unavco.org/community_science/workinggroups_projects/snarf/2008_mar_workshop/2008_mar_workshop.html Blewitt G., Kreemer C. W., Hammond W.H., and Goldfarb J. M., 2013, Terrestrial reference frame NA12 for crustal deformation studies in North America, J. Geodyn. (in press).Google Scholar

  • Blewitt G. and Lavalleè D., 2002, Effect of annual signals on geodetic velocity, J. Geophys. Res., 107(B7):ETG9-1-ETG9-11.CrossrefGoogle Scholar

  • Boehm J., Niell A., Tregoning P. and Schuh H., 2006, Global mapping function (GMF): a new empirical mapping function based on numerical weather model data, Geopgys. Res. Lett., 33(7), 1-4.Google Scholar

  • Buckley S. M., Rosen P. A., Hensley S. and Tapley B. D., 2003, Land subsidence in Houston, Texas, measured by radar interferometry and constrained by extensometers, J. Geophys. Res., 108(11), 252-242.Google Scholar

  • Collilieux X., Altamimi Z., Coulot D., Ray J. and Sillard P., 2007, Comparison of very long baseline interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods, J Geophys Res., 112(B12403), 1-18.Web of ScienceCrossrefGoogle Scholar

  • Collilieux X., Mètivier L., Altamimi Z., van Dam T. and Ray J., 2011, Quality assessment of GPS reprocessed terrestrial reference frame, GPS Solut. 15(3):219-231.CrossrefWeb of ScienceGoogle Scholar

  • Coplin L. S. and Galloway D., 1999, Houston- Galveston,Texas-Managing coastal subsidence, in Galloway, D., Jones, D.R., and Ingebritsen, S.E., eds., Land subsidence in the United States. U.S. Geological Survey Circular 1182, p. 35-84.Google Scholar

  • Dow J. M., Neilan R. E. and Rizos C., 2009, The international GNSS service in a changing landscape of Global Navigation Satellite Systems, J. Geodesy, 83(3-4), 191-198.Web of ScienceCrossrefGoogle Scholar

  • Eckl M. C., Snay R. A., Soler T., Cline M. W. and Mader G. L., 2001, Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration, J. Geodesy, 75(12), 633-640.CrossrefGoogle Scholar

  • Engelkemeir R., Khan S. and Burke K., 2010, Surface deformation in Houston, Texas using GPS, Tectonophysics, 490(1-2), 47-54.Google Scholar

  • Firuzabadi D. and King R. W., 2011, GPS precision as a function of session duration and reference frame using multipoint software, GPS Solut., 16(2), 191-196.Web of ScienceGoogle Scholar

  • Fort Bend Subsidence District, 2009, Fort Bend Subsidence District 2003 regulatory plan (amended 2007, 2009), Accessed February 22, 2013, at http://www.fbsubsidence.org/assets/pdf/FBRegPlan.pdf.Google Scholar

  • Gabrysch R. K., 1984, Ground-water withdrawals and land surface subsidence in the Houston Galveston region, Texas, 1906-90, Texas Department of Water Resources, Report 287, 64 p.Google Scholar

  • Harris Galveston Subsidence District, 2010, District regulatory plan 1999 [amended 2001, 2010], Accessed February 22, 2013, at http://www.hgsubsidence.org/assets/pdfdocuments/HGRegPlan.pdf.Google Scholar

  • Herring T. A., 2006, SNARF realization for PBO processing, presentation given at the 5th SNARF Workshop, held in Denver, CO, March 2006. Accessed February 23, 2013 at http://www.unavco.org/community_science/workinggroups_projects/snarf/2006_nov_ workshop/2006_nov_workshop.html Google Scholar

  • Herring T. A., King R. W. and McCluskey S. M., 2009, Introduction to GAMIT/GLOBK, release 10.35, Mass. Instit. of Tech., Cambridge.Google Scholar

  • Kasmarek M. C., Gabrysch R. K. and Johnson M. R., 2009, Estimated Land-Surface Subsidence in Harris County, Texas, 1915-17 to 2001, U.S. Geological Survey Scientific Investigations, Map 3097, 2 sheets.Google Scholar

  • Kasmarek M. C., Johnson M. R. and Ramage J. K., 2012, Water-level altitudes 2012 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2011 in the Chicot and Evangeline aquifers, Houston- Galveston region, Texas, U.S. Geological Survey Scientific Investigations, Map 3230, 18 p., 16 sheets.Google Scholar

  • Kedar S., Hajj G. A., Wilson B. D. and Heflin M. B., 2003, The effect of the second order GPS ionospheric correction on receiver positions, Geophys. Res. Lett. 30(16), 1144-1146.Google Scholar

  • Kouba J., 2005, A possible detection of the 26 December 2004 great Sumatra-Andaman Islands earthquake with solution products of the int. GNSS service, Studia Geophysica et Geodaetica, 49(4), 463-383.CrossrefGoogle Scholar

  • Kouba J. and Springer T., 2001, New IGS station and satellite clock combination, GPS Solut. 4(4), 31-36.CrossrefGoogle Scholar

  • Lyard F., Lefevre F., Letellier T. and Francis O., 2006, Modelling the global ocean tides: modern insights from FES2004, Ocean Dynam., 56(5-6), 394-415.CrossrefGoogle Scholar

  • Pearson C., McCaffrey R., Elliot J. L. and Snay R., 2010, HDTP 3.0: Software for copying with the coordinate changes associated with crustal motion, J. Surv. Eng., 136(2), 80-90.Google Scholar

  • Pearson P. and Snay R., 2013, Introducing HTDP 3.1 to transform coordinates across time and spatial reference frames, GPS Solut., 17(1), 1-17.CrossrefWeb of ScienceGoogle Scholar

  • Poland J. F., Yamamoto S. and Working Group, 1984, Field measurement of deformation, in Guidebook to studies of land subsidence due to ground-water withdrawal, edited by Poland, J. F., published by United Nations Educational Scientific and Cultural Organization (UNESCO), Paris, France, p. 17-35.Google Scholar

  • Ray J., Dong D. and Altamimi Z., 2004, IGS reference frames: status and future improvements, GPS Solut., 8(4), 251-266.CrossrefGoogle Scholar

  • Rebischung P., Griffiths J., Ray J., Schmid R., Collilieux X. and Garayt B., 2012, IGS08: the IGS realization of ITRF2008, GPS Solut., 16(4), 483-494.CrossrefGoogle Scholar

  • Shah S. D. and Lanning-Rush J., 2005, Principal faults in the Houston, Texas, Metropolitan Area, USGS, Scientific Investigations Map 2874, http://pubs.usgs.gov/sim/2005/2874Google Scholar

  • Schwarz C. R., 1989, The North American Datum of 1983, National Geodetic Survey, Rockville, MD 20852, December 1989. http://ontario.worldlibrary.net/Members/NOAA_Library/NADof1983.pdf Snay R. A., 1999, Using HTDP software to transform spatial coordinates across time and between reference frames, Surv. Land Inf. Syst., 59, 1, 15-25.Google Scholar

  • Snay R. A., 2003, Introducing Two Spatial Reference Frames for Regions of the Pacific Ocean, Survey and Land Information Science, 63, 1, 5-12.Google Scholar

  • Snay R. A. and Soler T., 2000, Modern Terrestrial Reference Systems. Part 2: The evolution of the NAD 83, Professional Surveyor, 20, 2, 16-18.Google Scholar

  • Soler T. and Snay R. A., 2004, Transforming positions and velocities between the International Terrestrial Reference Frame of 2000 and North American Datum of 1983, J. Surv. Eng., 130, 2, 49-55.Google Scholar

  • Wang G., 2011, GPS Landslide Monitoring: Single Base vs. Network Solutions, a case study based on the Puerto Rico and Virgin Islands Permanent GPS Network, J. Geod. Sci., 1, 3, 191-203.Google Scholar

  • Wang G., 2012, Kinematics of the Cerca del Cielo, Puerto Rico landslide derived from GPS observations, Landslides, 9, 1, 117-130.Google Scholar

  • Wang G., 2013a, Millimeter-Accuracy GPS Landslide Monitoring Using Precise Point Positioning with Single Receiver Phase Ambiguity Resolution: A Case Study in Puerto Rico, J. Geod. Sci., 3, 1, 22-31.Google Scholar

  • Wang G., 2013b, Teaching High-Accuracy GPS to Undergraduates Using Online Processing Services, J. Geos. Edu. 61, 2, 202-212.Google Scholar

  • Wang G. and Soler T., 2012, OPUS for Horizontal Subcentimeter-Accuracy Landslide Monitoring: A Case Study in the Puerto Rico and Virgin Islands Region, J. Surv. Eng., 138, 3, 143-153.Web of ScienceGoogle Scholar

  • Wang G. and Soler T., 2013, Using OPUS for Measuring Vertical Displacements in Houston, TX, J. Surv. Eng., 139(3), 126-134, doi: 10.1061/(ASCE)SU.1943-5428.0000103, http://dx.doi.org/10.1061/(ASCE)SU.1943-5428.0000103CrossrefWeb of ScienceGoogle Scholar

  • Zilkoski D. B., Hall L.W., Mitchell G. J., Kammula V., Singh A., Chrismer W. M. and Neighbors R. J., 2003, The Harris- Galveston Coastal Subsidence District/National Geodetic Survey Automated Global Positioning System Subsidence Monitoring Project, Proceedings of the U.S. Geological Survey Subsidence Interest Group Conference, OFR. 03-308, p13-28.Google Scholar

  • Zumberge J., Heflin M., Jefferson D., Watkins M. and Webb F., 1997, Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res., 102, B3, 5005-5017. Google Scholar

About the article

Published Online: 2013-10-15

Published in Print: 2013-09-01

Citation Information: Journal of Geodetic Science, Volume 3, Issue 3, Pages 188–202, ISSN (Online) 2081-9943, ISSN (Print) 2081-9919, DOI: https://doi.org/10.2478/jogs-2013-0021.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Xi-Cun He, Tian-Liang Yang, Shui-Long Shen, Ye-Shuang Xu, and Arul Arulrajah
International Journal of Environmental Research and Public Health, 2019, Volume 16, Number 15, Page 2729
Guoquan Wang, Timothy J. Kearns, Jiangbo Yu, and Gabriel Saenz
Landslides, 2014, Volume 11, Number 1, Page 119
Feifei Qu, Zhong Lu, Jin-Woo Kim, and Weiyu Zheng
Remote Sensing, 2019, Volume 11, Number 12, Page 1498
Swafiyudeen Bawa, Lazarus Mustapha Ojigi, Joseph Danasabe Dodo, and Kola M. Lawal
SN Applied Sciences, 2019, Volume 1, Number 7
Yuhao Liu, Xiaohan Sun, Guoquan Wang, Michael J. Turco, Gonzalo Agudelo, Yan Bao, Ruibin Zhao, and Shuilong Shen
Remote Sensing, 2019, Volume 11, Number 10, Page 1213
Guoquan Wang, Hanlin Liu, Glen Mattioli, Meghan Miller, Karl Feaux, and John Braun
Remote Sensing, 2019, Volume 11, Number 6, Page 680
G. Wang, J. Welch, T. J. Kearns, L. Yang, and J. Serna Jr.
Proceedings of the International Association of Hydrological Sciences, 2015, Volume 372, Page 297
Jiangbo Yu and Guoquan Wang
Natural Hazards and Earth System Sciences, 2016, Volume 16, Number 7, Page 1583
Yan Bao, Wen Guo, Guoquan Wang, Weijun Gan, Mingju Zhang, and Jack S. Shen
Journal of Surveying Engineering, 2018, Volume 144, Number 1, Page 05017007
Linqiang Yang, Guoquan Wang, Victor Huérfano, Christa G. von Hillebrandt-Andrade, Jose A. Martínez-Cruzado, and Hanlin Liu
Natural Hazards, 2016, Volume 83, Number 1, Page 641
J. Yu and G. Wang
Survey Review, 2017, Volume 49, Number 352, Page 51
Timothy J. Kearns, Guoquan Wang, Yan Bao, Jiajun Jiang, and Dongje Lee
Journal of Surveying Engineering, 2015, Volume 141, Number 4, Page 05015002
Guoquan Wang, Yan Bao, Yanet Cuddus, Xueyi Jia, John Serna, and Qi Jing
Natural Hazards, 2015, Volume 77, Number 3, Page 1939
Guoquan Wang and Tomás Soler
Journal of Surveying Engineering, 2015, Volume 141, Number 2, Page 05014004
Guoquan Wang, Jiangbo Yu, Timothy J. Kearns, and Jesse Ortega
Journal of Surveying Engineering, 2014, Volume 140, Number 3, Page 05014001

Comments (0)

Please log in or register to comment.
Log in