Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Incorporation of the GPS satellite ephemeris covariance matrix into the precise point positioning

Masoud Shirazian
  • Corresponding author
  • Division of Geodesy and Geoinformatics, Royal institute of Technology, 100 44 Stockholm, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-15 | DOI: https://doi.org/10.2478/jogs-2013-0022

Abstract

In GPS positioning, usually the satellite ephemeris are fixed in the observation equations using broadcast or published values. Therefore, to have a realistic covariance matrix for the observations one must incorporate a well-defined covariance matrix of the satellite ephemeris into the observations covariance matrix. Contributions so far have discussed only the variance and covariance of the observations. Precise Point Positioning (PPP) is a technique aimed at processing of measurements from a single (stand-alone) GPS receiver to compute high-accurate position. In this paper, the covariance matrix of the satellite ephemeris and its impact on the position estimates through the PPP are discussed.

Keywords: covariance matrix; PPP; satellite ephemeris

  • Amiri-Simkooei A.R., 2007, Least-squares variance component estimation, Ph.D. dissertation, Delft University of Technology.Google Scholar

  • Barnes J.B., 2000, Real time kinematic GPS and multipath: Characterisation and improved least squares modelling. PhD dissertation, University of Newcastle upon Tyne.Google Scholar

  • Beutler G., Rothacher M., Schaer S, Springer T.A., Kouba J., Neilan R.E., 1999, The International GPS Service (IGS): an interdisciplinary service in support of Earth sciences. Advances in Space Research, 23, 4, 631-635. Euler H.-J., Goad C.C., 1991, On optimal filtering of GPS dual frequency observations without using orbit information. Bulletin Géodésique (1991) 65: 130-143, Springer-Verlag Berlin.Google Scholar

  • Gerdan G.P., 1995, A comparison of weighting doubledifference pseudorange measurements. Trans. Tasman Surveyor 1, 1, 60-66.Google Scholar

  • Hilla S., 2010, The Extended Standard Product 3 Orbit Format (SP3-c). http://igscb.jpl.nasa.gov/igscb/data/format/sp3c.txt Google Scholar

  • Hofmann-Wellenhof B., Lichtenegger H., and Wasle E., 2008, Gnss: Global Navigation Satellite Systems: Gps, Glonass, Galileo, and More. Springer, pp.127Google Scholar

  • IERS Conventions, 2010, Gérard Petit and Brian Luzum (Eds.). (IERS Technical Note ; 36) Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 2010. 179 pp., ISBN 3-89888-989-6.Google Scholar

  • Jin, X.X., 1996, Theory of carrier adjusted DGPS positioning approach and some experimental results, Delft University Press, 163 pp.Google Scholar

  • Krueger E., Schueler T., Hein G.W., Martellucci A. and Blarzino G., 2004, Galileo Tropospheric Correction Approaches developed within GSTB-V1, Proc. of GNSS 2004 - European Navigation Conference, 17-19 May 2004, Rotterdam, The Netherlands.Google Scholar

  • Montenbruck O., Gill E., and Kroes R., 2005, Rapid orbit determination of LEO satellites using IGS clock and ephemeris products, GPS Solutions, DOI:10.1007/s10291-005-0131-0.CrossrefGoogle Scholar

  • Niell A.E., 1996, Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research 101 (B), 3227-3246.Google Scholar

  • Odijk D., 2002, Fast precise GPS positioning in the presence of ionospheric delays, Ph.D. dissertation, Delft University of Technology.Google Scholar

  • Orfanidis S., 2007, Optimum Signal Processing, 2nd edn, McGraw-Hill. Priestley M.B., 1981, Spectral Analysis and Time Series. Academic Press, Orlando.Google Scholar

  • Schenewerk M., 2003, A brief review of basic GPS orbit interpolation strategies, DOI 10.1007/s10291-002-0036-0, GPS Solutions (2003) 6, 265-267CrossrefGoogle Scholar

  • Shirazian M., 2006, An attempt on more realistic view of GPS precise point positioning. Proceeding of the 3rd ESA workshop on satellite navigation user equipment technologies (NAVITEC 2006), 11-13 December 2006, ESA/ESTEC, Noordwijk, The Netherlands.Google Scholar

  • Teunissen P.J.G., 2000, Testing theory; an introduction, Delft University Press, 90-93.Google Scholar

  • Tiberius C.C.J.M., 1999, The GPS data weight matrix: What are the issues? Proceedings of the National Technical Meeting and the 19th Biennal Guidance Test Symposium, San Diego, USA, January 25-27, 219-227.Google Scholar

  • Tiberius C.C.J.M. and Borre K., 1999. Probability distribution of GPS code and phase data. Zeitschrift für Vermessungswesen 124, 8, 264-273.Google Scholar

  • Wu, J.T., Wu S.C., Hajj G.A., Bertiger W.I., and Lichten S.M., 1993, Effects of antenna orientation on GPS carrier phase, Man. Geodetica 18, 91-98. Google Scholar

About the article

Published Online: 2013-10-15

Published in Print: 2013-09-01


Citation Information: Journal of Geodetic Science, Volume 3, Issue 3, Pages 143–150, ISSN (Online) 2081-9943, ISSN (Print) 2081-9919, DOI: https://doi.org/10.2478/jogs-2013-0022.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in