Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Sjöberg, Lars

1 Issue per year

Open Access
Online
ISSN
2081-9943
See all formats and pricing
More options …

Validation of GOCE gravity field models using GPS-leveling data and EGM08: a case study in Brazil

V. G. Ferreira / Y. Zhang / S. R. C. de Freitas
Published Online: 2013-10-15 | DOI: https://doi.org/10.2478/jogs-2013-0027

Abstract

Validation of geopotential models derived from Gravity field and steady-state Ocean Circulation Explorer (GOCE) observations is a challenging task in regions with less advanced geodetic infrastructure such as Brazil. In order to assess the current performance of these models, 262 GPS-leveling sites, Earth Gravitational Model 2008 (EGM08) and Residual Terrain Model (RTM) are employed. The validation is based on the differences between GPS-leveling and GOCE-derived models. For the former, the spectral content beyond the GOCE-derived models’ maximum degree is removed by using EGM08 and RTM. The results indicate that the GOCE-based models: DGM-1S, SPW (Releases 1 and 2), TIM (Releases 1, 2, 3 and 4), and DIR (Releases 2, 3 and 4), at their maximum degrees have a worse performance than EGM08 while DIR-R1 shows an improvement of 11%. Furthermore, from the steepness of the slopes of the root mean square error (RMSE), it is observed that the optimal combination between DIR-R1 and EGM08 occurs at degree 230 (RMSE of 0.201 m). For the satellite-only models, DIR-R3 reduces the RMSE by ~1.4% compared to TIM-R4 at degree 190. These results are important for Brazil where the accuracy of the current geoid model is approximately 0.28 m.

Keywords: EGM08; GOCE; GPS-leveling; normal-orthometric heights; omission error; residual terrain model

  • Barthelmes F., 2013, Definition of functionals of the geopotential and their calculation from spherical harmonic models. Scientific Technical Report, GeoForschungsZentrum, Potsdam, Germany.Google Scholar

  • Becker J.J., Sandwell D.T., Smith W.H.F., Braud J., Binder B., Depner J., Fabre D., Factor J., Ingalls S., Kim S.-H., Ladner R., Marks K., Nelson S., Pharaoh A., Trimmer R., von Rosenberg J., Wallace G. and Weatherall P., 2009, Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_ PLUS. Mar. Geod., 32, 4, 355-371.Web of ScienceCrossrefGoogle Scholar

  • Bruinsma S.L., J. Marty C., Balmino G., Biancale R., Foerste C., Abrikosov O. and Neumayer H., 2010, GOCE gravity field recovery by means of the direct numerical method. ESA Living Planet Symposium 2010, June 27 - July 2 2010, Bergen, Norway.Google Scholar

  • Bruinsma S.L., Foerste C., Abrikosov O., Marty J.C., Rio M.- H., Mulet S. and Bonvalot S., 2013, The new ESA satellite-only gravity field model via the direct approach. Geophys. Res. Lett., doi:10.1002/grl.50716.CrossrefWeb of ScienceGoogle Scholar

  • Burša M., Kenyon S., Kouba J., Šíma Z., Vatrt V. and Vojtíšková M., 2004, A global vertical reference frame based on four regional vertical datums. Stud. Geophys. Geod., 48, 3, 493-502.CrossrefGoogle Scholar

  • Burša M., Kenyon S., Kouba J., Šíma Z., Vatrt V., Vítek V. and Vojtíšková M., 2006, The geopotential value W0 for specifying the relativistic atomic time scale and a global vertical reference system. J. Geod., 81, 2, 103-110. de Matos A.C.O.C., Blitzkow D., Guimarães G.N., Lobianco M.C.B. and Costa S.M.A., 2012, Validation of the MAPGEO2010 and comparison with recent geopotential models (in Portuguese).Web of ScienceGoogle Scholar

  • Bol. Cienc. Geod., 18, 1, 101-122.Google Scholar

  • Ferreira V.G., de Freitas S.R.C. and Heck B., 2011, The separation between geoid and quasigeoid: an analysis in the Brazilian context (in Portuguese). Rev. Bras. Cartogr., 63, 39-50.Google Scholar

  • Ferreira V.G. and de Freitas S.R.C., 2012, An attempt to link the Brazilian Height System to a World Height System. Bol. Cienc. Geod., 18, 3, 363-377.Web of ScienceGoogle Scholar

  • Forsberg R., 1984, A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modeling. Rep 355, Department of Geodetic Science, The Ohio State University, Columbus, Ohio.Google Scholar

  • Gruber T., Visser P.N.A.M., Ackermann C. and Hosse M., 2011, Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J. Geod., 85, 11, 845-860.Google Scholar

  • Gruber T., Gerlach C. and Haagmans R., 2012, Intercontinental height datum connection with GOCE and GPS-levelling data. J. Geod. Sci., 2, 4, 270-280.Google Scholar

  • Guimarães G.N., Matos A.C.O.C. and Blitzkow D., 2012, An evaluation of recent GOCE geopotential models in Brazil. J. Geod. Sci., 2, 2, 144-155.Google Scholar

  • Hashemi-Farahani H., Ditmar P., Klees R., da Encarnação J.T., Liu X., Zhao Q. and Guo J., 2013, Validation of static gravity field models using GRACE K-band ranging and GOCE gradiometry data. Geophys. J. Int. 194, 2, 751-771.Web of ScienceGoogle Scholar

  • Heck B., 2003, Rechenverfahren un auswertemodelle der landesvermessung. 3rd edition, Wichman, Karlsruhe.Google Scholar

  • Hirt C., Featherstone W.E. and Marti U., 2010, Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. J. Geod., 84, 9, 557-567.Web of ScienceGoogle Scholar

  • Hirt C., Kuhn M., Featherstone W.E. and Göttl F., 2012, Topographic/ isostatic evaluation of new-generation GOCE gravity field models. J. Geophys. Res., 117, B5, B05407.CrossrefWeb of ScienceGoogle Scholar

  • Hirt C., 2013, RTM gravity forward-modeling using topography/ bathymetry data to improve high-degree global geopotential models in the coastal zone. Mar. Geod., 36, 2, 183-202.Web of ScienceCrossrefGoogle Scholar

  • Hofmann-Wellenhof B. and Moritz H., 2006, Physical Geodesy. 2nd corrected edition, SpringerWienNewYork, Austria.Google Scholar

  • Jarvis A., Reuter H.I., Nelson A. and Guevara E., 2008, Hole-filled SRTM for the globe Version 4. Available from the CGIAR-CSI SRTM 90m Database (http: //srtm.csi.cgiar.org). Retrieved May 13, 2013, from http://www.studygs.net/citation.htm.Google Scholar

  • Jekeli C., Yang H.J. and Kwon J.H., 2009, Using gravity and topography-implied anomalies to assess data requirements for precise geoid computation. J. Geod., 83, 12, 1193-1202.Web of ScienceGoogle Scholar

  • Migliaccio F., Reguzzoni M., Sansó F., Tscherning C.C. and Veicherts M., 2010, GOCE data analysis: the space-wise approach and the first space-wise gravity field model. ESA Living Planet Symposium 2010, June 27 - July 2 2010, Bergen, Norway.Google Scholar

  • Migliaccio F., Reguzzoni M., Gatti A., Sanso F. and Herceg M., 2011, A GOCE-only global gravity field model by the space-wise approach. Proceedings of the 4th International GOCE User Workshop, 31 March-1 April 2011, Munich.Google Scholar

  • Moritz H., 1980, Geodetic reference system 1980. Bull. Géod., 54, 3, 395-405.Google Scholar

  • Nagy D., Papp G. and Benedek J., 2000, The gravitational potential and its derivatives for the prism. J. Geod., 74, 7/8, 552-560.Google Scholar

  • Pail R., Goiginger H., Mayrhofer R., Schuh W., Brockmann J. M., Krasbutter I., Hoeck E. and Fecher T., 2010, GOCE gravity field model derived from orbit and gradiometry data applying the time-wise method. ESA Living Planet Symposium 2010, June 27 - July 2 2010, Bergen, Norway.Google Scholar

  • Pail R., Bruinsma S., Migliaccio F., Förste C., Goiginger H., Schuh W.-D., Höck E., Reguzzoni M., Brockmann J. M., Abrikosov O., Veicherts M., Fecher T., Mayrhofer R., Krasbutter I., Sansó F. and Tscherning C.C., 2011, First GOCE gravity field models derived by three different approaches. J. Geod., 85, 11, 819-843.Google Scholar

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2008, An earth gravitational model to degree 2160: EGM2008.Google Scholar

  • Proceedings of European Geosciences Union, 13-14 April 2008, Vienna, Austria.Google Scholar

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2012, The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res., 117, B4, B04406.CrossrefGoogle Scholar

  • Poutanen M., Vermeer M. and Mäkinen J., 1996, The permanent tide in GPS positioning. J. Geod., 70, 8, 499-504.Google Scholar

  • Rummel R., 2013, Height unification using GOCE. J. Geod. Sci., 2, 4, 355-362.Google Scholar

  • Sanchez L., 2007, Definition and realisation of the SIRGAS vertical reference system within a globally unified height system. In P. Tregoning and C. Rizos (Eds.), Dynamic Planet, International Association of Geodesy Symposia, 130, Springer Berlin Heidelberg, Berlin, 638-645.Google Scholar

  • Shen W., Li J., Tian B. and Han J., 2011, Determination of the quasi-geoid of Xinjiang and Tibet areas and the normal height of Mt. Everest based on EGM2008. Terr. Atmos. Ocean. Sci., 22, 2, 121-131.Web of ScienceGoogle Scholar

  • Tenzer R., Vatrt V., Abdalla A. and Dayoub N., 2010, Assessment of the LVD offsets for the normal-orthometric heights and different permanent tide systems-a case study of New Zealand. Appl. Geom., 3, 1, 1-8.Google Scholar

  • Torge W. and Müller J., 2012, Geodesy. 4th Edition, Walter de Gruyter, Berlin.Google Scholar

  • Tziavos I.N., Vergos G.S. and Grigoriadis V.N., 2009, Investigation of topographic reductions and aliasing effects on gravity and the geoid over Greece based on various digital terrain models. Surv. Geophys., 31, 1, 23-67.Web of ScienceGoogle Scholar

  • Ustun A. and Abbak R.A., 2010, On global and regional spectral evaluation of global geopotential models. J. Geophys. Eng., 7, 4, 369-379. Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2013-10-15

Published in Print: 2013-09-01


Citation Information: Journal of Geodetic Science, ISSN (Online) 2081-9943, ISSN (Print) 2081-9919, DOI: https://doi.org/10.2478/jogs-2013-0027.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Maria Eugenia Gomez, Raul Perdomo, and Daniel Del Cogliano
Acta Geophysica, 2017
[2]
José L. Carrión Sánchez and Sílvio R. Correia de Freitas
Boletim de Ciências Geodésicas, 2016, Volume 22, Number 2, Page 248
[3]
Ismael Foroughi, Yosra Afrasteh, Sabah Ramouz, and Abdolreza Safari
Geodesy and Cartography, 2017, Volume 43, Number 1, Page 1

Comments (0)

Please log in or register to comment.
Log in