Burša M. and Šíma Z., 1980, Tri-axiality of the Earth, the Moon and Mars, Stud. Geoph. Geod., 24, 211-217.

Chen W.-H. and Chen S.-G., 2011, A note of boundary geodesic problem on regular surfaces, Proceedings of the European Computing Conference, 105-109.

Dassios G., 2012, Ellipsoidal harmonics: theory and applications, Cambridge University Press, Cambridge.

Deakin R. E. and Hunter M. N., 2008, Geometric Geodesy - Part A, Lecture Notes, School of Mathematical & Geospatial Sciences, RMIT University, Melbourne, Australia.

Featherstone W. E. and Claessens S. J., 2008, Closed-form transformation between geodetic and ellipsoidal coordinates, Stud. Geoph. Geod., 52, 1-18. [Web of Science]

Feltens J., 2009, Vector method to compute the Cartesian (*X*, *Y *, *Z*) to geodetic (*ϕ*, *_*, h) transformation on a triaxial ellipsoid, J. Geod., 83, 129-137. [Web of Science]

Guggenheimer H. W., 1977, Differential geometry, Dover, New York.

Heiskanen W. A. and Moritz H., 1967, Physical geodesy, W. H. Freeman and Co., San Francisco and London.

İz H. B., Ding X. L., Dai C. L. and Shum C. K., 2011, Polyaxial figures of the Moon, J. Geod. Sci., 1, 348-354.

Jacobi C. G. J., 1839, Note von der geodätischen linie auf einem ellipsoid und den verschiedenen anwendungen einer merkwürdigen analytischen substitution, J. Crelle, 19, 309-313.

Karney C. F. F., 2013, Algorithms for geodesics, J. Geod., 87, 43-55.

Klingenberg W., 1982, Riemannian geometry, Walter de Gruyter, Berlin, New York.

Ligas M., 2012a, Cartesian to geodetic coordinates conversion on a triaxial ellipsoid, J. Geod., 86, 249-256. [Web of Science]

Ligas M., 2012b, Two modified algorithms to transform Cartesian to geodetic coordinates on a triaxial ellipsoid, Stud. Geoph. Geod., 56, 993-1006.

Maekawa T., 1996, Computation of shortest paths on free-form parametric surfaces, J. Mechanical Design, ASME Transactions, 118, 499-508.

Moritz H., 1980, Geodetic Reference System 1980, Bull. Geod., 54, 395-405.

Panou G., Delikaraoglou D. and Korakitis R., 2013, Solving the geodesics on the ellipsoid as a boundary value problem, J. Geod. Sci., 3, 40-47.

Sjöberg L. E. and Shirazian M., 2012a, Solving the direct and inverse geodetic problems on the ellipsoid by numerical integration, J. Surv. Eng., 138, 9-16. [Web of Science]

Sjöberg L. E., 2012b, Solutions to the ellipsoidal Clairaut constant and the inverse geodetic problem by numerical integration, J. Geod. Sci., 2, 162-171.

Shebl S. A. and Farag A. M., 2007, An inverse conformal projection of the spherical and ellipsoidal geodetic elements, Surv. Rev., 39, 116-123. [Web of Science]

Struik D. J., 1961, Lectures on classical differential geometry, 2nd ed., Dover, New York.

Tabanov M. B., 1999, Normal forms of equations of wave functions in new natural ellipsoidal coordinates, American Mathematical Society, Translations, 193, 225-238.

van Brunt B., 2004, The calculus of variations, Springer- Verlag, New York.

## Comments (0)