Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
See all formats and pricing
More options …

Sensitivity of Goce Gradients on Greenland Mass Variation And Changes in Ice Topography

M. Herceg / C. C. Tscherning / J. F. Levinsen
Published Online: 2014-03-06 | DOI: https://doi.org/10.2478/jogs-2014-0001


The Gravity field and steady state Ocean Circulation Explorer (GOCE) maps variations in the gravity field by observing second order derivatives (gradients) of the Earth gravitational potential. Flying in the low altitude of 255 km and having a spatially dense data distribution of short wavelengths of the gravity field, GOCE may be used to enhance the time varying gravity signal coming fromthe GRACE satellites.

The GOCE gradients may potentially be used for the determination of residual masses in local regions. This can be done using Least-Squares Collocation (LSC) or the Reduced Point Mass (RPM) method. In this study, different gravity field solutions are calculated by the use of RPM, LSC and GOCE gradients, respectively. Gravity field time series are created and presented for the six consecutive months of GOCE gradient observations, data being acquired between November 2009 and June 2010. Corresponding gravity anomaly results are used for the calculation of ice mass changes by the use of theRPMmethod. The results are then compared with the computed topographic effect of the ice by the use of a modified topographic correction and the Gravsoft TC program.

The maximal gravity changes at the ground predicted from GOCE gradients are between 2 and 4 mGal for the period considered. The gravity anomaly estimation error arising from the GOCE gradient data using only Tzz with an associated error of 20 mE is 11 mGal. This analysis shows the potential of using GOCE data for observations of ice mass changes although the GOCE dataset is limited to only six months. We expect four years of GOCE gradient observations to be available by mid-2014. This will increase the accuracy and spatial resolution of the GOCE measurements, which may lead to an accuracy necessary for observing ice mass changes.

Keywords: collocation; gradients; mass change; reduced point mass


  • Floberghagen, R., Muzi, D., De la Feld, F., B., W., Rummel, R., Gruber, T., and Van Hees, R. (2010). GOCE High Level Processing Facility: GOCE Level 2 Product Data Handbook.Google Scholar

  • Forsberg, R. and Tscherning, C. C. (2008). An overview manual for the GRAVSOFT, Geodetic Gravity Field Modelling Programs, 2 edition.Google Scholar

  • Herceg, M. (2012). GOCE data for Ocean Modelling. PhD thesis, DTU Space, National Space Institute, Technical University of Denmark.Google Scholar

  • Howat, I. M., Ahn, Y., Joughin, I., Van den Broeke, M. R., and Lenaerts, J. T. M. and, S. B. (2011). Mass balance of greenland’s three largest outlet glaciers, 2000-2010. Geophysical Researc Letters, 38 (12).Google Scholar

  • Joughin, I., Smith, B., Howat, I. M., Scambos, T., and Moon, T. (2010). Greenland flow variability from ice-sheet-wide velocity mapping. Journal of Glaciology, 56:415-430.Web of ScienceGoogle Scholar

  • Joughin, I., Smith, B. E., Shean, D. E., and Floricioiu, D., (2014). Brief Communication: Further summer speedup of Jakobshavn Isbræ, The Cryosphere, 8, 209-214, doi:10.5194/tc-8-209-2014.Web of ScienceCrossrefGoogle Scholar

  • Khan, S. A., Wahr, J., Bevis, M., Velicogna, I., and Kendrick, E. (2010). Spread of ice mass loss into northwest greenland observed by grace and gps. Geophysical Research Letters, 37(6).Web of ScienceGoogle Scholar

  • Knudsen, P. (1987). Estimation and modelling of the local empirical covariance function using gravity and satellite altimeter data. Bulletin Geodesique, vol. 61:pp. 145-160.Google Scholar

  • Krabill, W., Hanna, E., Huybrechts, P., Abdalati, W., Cappelen, J., Csatho, B., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., Thomas, R., and Yungel, J. (2004). Greenland ice sheet: Increased coastal thinning. Geophysical Research Letters, 31(24):n/a-n/a.Google Scholar

  • Krarup, T. (1969). A Contribution to the Mathematical Foundation of Physical Geodesy. Meddelelse no. 44, Geodaetisk Institut, Koebenhavn.Google Scholar

  • Levinsen, J. F., Howat, I. M., and Tscherning, C. C. (2013). Improving maps of ice sheet surface elevation change using combined laser altimeter and stereoscopic elevation model data. Journal of Glaciology, 59, no. 215.Web of ScienceGoogle Scholar

  • Pavlis, E., Holmes, S., Kenyon, S., and Factor, J. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysics Research, 117:38.Google Scholar

  • Sansó, F., Sideris, M. G., Tscherning, C., Pavlis, N., Tziavos, I., Andersen, O., and Fotopoulos, G. (2013). Geoid Determination - Theory and Methods, volume 110 of Lecture Notes in Earth System Sciences. Springer Berlin Heidelberg.Google Scholar

  • Sjogren, W., Muller, P., Gottlieb, P., Wong, L., Buechler, G., Downs, W., and Prislin, R. (1971). Lunar surface mass distribution from dynamical point-mass solution. The moon, 2:338-353.Google Scholar

  • Sørensen, L. S. (2010). Changes of the Greenland ice sheet - derived from ICESat and GRACE data. PhD thesis, DTU Space.Google Scholar

  • Svendsen, P., Andersen, O., and Nielsen, A. (2013). Acceleration of the greenland ice sheet mass loss as observed by grace: Con- fidence and sensitivity. Earth and Planetary Science Letters, 364(0):24 - 29.Web of ScienceGoogle Scholar

  • Tscherning, C., Forsberg, R., and Knudsen, P. (1992.). GRAVSOFT - A System for Geodetic Gravity Field Modelling. Proc. 1. Continental Workshop on the Geoid in Europe, Research Institute of Geodesy, Topography and Cartography, Prague, pages 327- 334.Google Scholar

  • Tscherning, C. C. (1976). Covariance Expressions for Second and Lower Order Derivatives of the Anomalous Potential. Reports of the Department of Geodetic Science No. 225, The Ohio State University, Columbus, Ohio.Google Scholar

  • Tscherning, C. C. and Arabelos, D. (2011). Gravity anomaly and gradient recovery from GOCE gradient data using LSC and comparisons with known ground data. Proceedings 4th International GOCE user workshop, ESA Publications Division, Nordwijk, The Netherlands.Google Scholar

  • Tscherning, C. C. and Rapp, R. H. (1974). Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Deflections of the Vertical Implied by Anomaly Degree-Variance Models. Reports of the Department of Geodetic Science No. 208, The Ohio State University, Columbus, Ohio.Google Scholar

  • Tscherning, C. C., Veicherts, M., and Herceg, M. (2010). Reduced point mass or multipole base functions. Contadakis ME, Kaltsikis C, Spatalas S, Tokmakidis K, Tziavos IN (eds), The Apple of the Knowledge, Honorary Volume to Emeritus Professor Demetrius Arabelos, Ziti Editions, ISBN: 978-960-243-674-5, pages 282-289.Google Scholar

  • Velicogna, I. and Wahr, J. (2005). Greenland mass balance from grace. Geophysical Research Letters, 32(18).Google Scholar

  • Velicogna, I. and Wahr, J. (2013). Time-variable gravity observations of ice sheet mass balance: Precision and limitations of the grace satellite data. Geophysical Research Letters, 40(12):3055-3063.Web of ScienceGoogle Scholar

  • Vermeer, M. (1982). The use of mass point models for describing the Finnish gravity field. Proceedings, 9th Meeting Nordic Geodetic Commission, Gaevle, Sweden.Google Scholar

  • Vermeer, M. (1992). Geoid determination with mass point frequency domain inversion in the Mediterranean. Mare Nostrum 2, GEOMED report, Madrid, pages 109-119. Google Scholar

About the article

Published Online: 2014-03-06

Published in Print: 2014-04-01

Citation Information: Journal of Geodetic Science, Volume 4, Issue 1, ISSN (Online) 2081-9943, DOI: https://doi.org/10.2478/jogs-2014-0001.

Export Citation

© by M. Herceg . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

E. Sinem Ince and Spiros D. Pagiatakis
Journal of Geodesy, 2016, Volume 90, Number 12, Page 1389

Comments (0)

Please log in or register to comment.
Log in