Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

Journal of Geodetic Science

Editor-in-Chief: Eshagh, Mehdi

Open Access
Alle Formate und Preise
Weitere Optionen …

Effect of La Niña on The Global Mean Sea Level And North Pacifc Ocean Mass Over 2005-2011

Habib B. Dieng / Anny Cazenave / Benoit Meyssignac / Olivier Henry / Karina von Schuckmann / Hindumathi Palanisamy / Jean Michel Lemoine
Online erschienen: 11.03.2014 | DOI: https://doi.org/10.2478/jogs-2014-0003


Interannual fluctuations of the global mean sea level are highly correlated with El Niño-Southern Oscillation (ENSO) events, with positive/negative anomalies during El Niño/La Niña. In a previous study we showed that during the 1997 - 1998 El Niño, a positive anomaly observed in the global mean sea level was mostly caused by an increase of the ocean mass component rather than by steric (thermal) effects. This result was related to an increase of precipitation over the tropical ocean and a deficit in land water storage. In the present study, we investigate the effect of the recent 2008 and 2011 La Niña events on the satellite altimetry-based global mean sea level. We find that the large global mean sea level drop associated with the 2011 La Niña results from the combined decrease of the steric and ocean mass components, with a slightly dominant contribution from the latter. We show that the ocean mass contribution to the global mean sea level drop is spatially confined over the north eastern tropical Pacific (just as was found previously for the 1997 - 1998 El Niño, but with opposite sign). Corresponding ocean mass spatial pattern is closely correlated to observed sea level and steric spatial patterns over the duration of the La Niña event. This is also observed for previous El Niño and La Niña events. Such a drop in ocean mass during ENSO in the eastern part of the tropical Pacific has not been reported before. It is possibly related to a temporary decrease in the net precipitation over the north eastern Pacific (opposite situation was found during the 1997 - 1998 El Niño).


  • Alkama R., Decharme B., Douville H., Becker M., Cazenave A., Sheffield J., Voldoire A., Tyteca S., Le Moigne P. (2010). Global evaluation of the ISBA-TRIP continental hydrologic system; Part 1 : a two-fold constraint using GRACE terrestrial water storage estimates and in situ river discharges J. Hydrometeorology, 11, 583-600, doi:10.1175/2010JHM1211.Web of ScienceCrossrefGoogle Scholar

  • Barker P. M., Dunn J. R., Domingues C. M., and Wijffels S. E., (2011) Pressure Sensor Drifts in Argo and Their Impacts, J. Atmos. Ocean. Tech., 28, 1036-1049.Web of ScienceCrossrefGoogle Scholar

  • Boening C., Willis J.K., Landerer F.W. and Nerem R.S. (2012). The 2011 La Niña: so strong, the oceans fell, Geophys. Res. Lett., 39, L19602, doi:10.1029/2012GL053055.CrossrefGoogle Scholar

  • Cabanes, C., A. Gourazel, K. von Schuckmann, M. Hamon, V. Turpin, C. Coatanoan, S. Guinehut, C. Boone, N. Ferry, G. Reverdin, S. Pouliquen and P.Y. Le Traon (2013): The CORA dataset: validation and diagnostics of ocean temperature and salinity in situ measurements, Ocean Sci., 9, 1-18, www.ocean-sci.net/9/1/2013/, doi:10.5194/os-9-1-2013.CrossrefWeb of ScienceGoogle Scholar

  • Cazenave A., O. Henry, S. Munier, B. Meyssignac, T. Delcroix, W. Llovel, H. Palanisamy and M. Becker, (2012). ENSO influence on the global mean sea level over 1993-2010, Marine Geodesy, 35(S1), 82-97.Web of ScienceGoogle Scholar

  • Chambers D. and J. Schröter (2011). Measuring ocean mass variability from satellite gravimetry, Journal of Geodynamics, 52, 333-343, doi:10.1016/j.jog.2011.04.004.Web of ScienceCrossrefGoogle Scholar

  • Church J.A., N.J. White, L.F. Konikow, C.M. Domingues, J.G. Cogley, E. Rignot, J.M. Gregory, M.R. van den Broeke, A.J. Monaghan, and I. Velicogna (2011). Revisiting the Earth’s sea level and energy budgets from 1961 to 2008, Geophys. Res. Lett., 38, L18601, doi:10.1029/2011GL048794.CrossrefGoogle Scholar

  • Church J. A., P. U. Clark, A. Cazenave, J. M. Gregory, S. Jevrejeva, A. Levermann, M. A. Merrifield, G. A. Milne, R. S. Nerem, P. D. Nunn, A. J. Payne, W. T. Pfeffer, D. Stammer and A. S. Unnikrishnan (2013). Sea Level Change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, in press.Google Scholar

  • Dai A. and Wigley T.M.L (2000), Global patterns of ENSO-induced precipitation, Geophys. Res. Lett., 27, 9, 1283-1286.Google Scholar

  • Decharme B., Alkama R., Douville H., Becker M., Cazenave A., Sheffield J., Voldoire A., Tyteca S., Le Moigne P. (2010). Global evaluation of the ISBA-TRIP continental hydrologic system using GRACE; Part 2 : results, J. Hydrometeorology, 11, 601- 617.CrossrefGoogle Scholar

  • Fasullo J.T., Boening C. , Landerer F.W. and Nerem R.S. (2013). Australia’s unique influence on global mean sea level in 2010-2011, Geophys. Res. Lett., in press.Google Scholar

  • Gaillard F., Autret E., Thierry V., Galaup P., Coatanoan C., and Loubrieu T. (2009), Quality control of large Argo data sets, J. Atmos. Oceanic Technol., 26, 337-351.Google Scholar

  • Gordon A.L., Sprintall J., Van Aken H.M., Susanto D., Wijffels S., Molcard R., Ffield A., Pranowo W., Wirasantosa S. (2010) “The Indonesian Throughflow during 2004-2006 as observed by the INSTANT program.” “Modeling and Observing the Indonesian Throughflow”, Guest Editors: A. L. Gordon and V.M. Kamenkovich, Dynamics of Atmosphere and Oceans, vol(50) 115-128.Google Scholar

  • Gu G. and Adler R.F. (2011), Precipitation and temperature variations on the interannual time scale : assessing the impact of ENSO and volcanic eruptions, J. Climate, 24, 2258-2270.Google Scholar

  • Ishii M. and Kimoto M. (2009), Reevaluation of historical ocean heat content variations with varying XBT and MBT depth bias corrections, Journal of Oceanography, 65, 287-299.Web of ScienceGoogle Scholar

  • Hanna et al. (2013). Ice-sheet mass balance and climate change, Nature, 498, 51-59, doi:10.1038/nature12238.CrossrefGoogle Scholar

  • Henry O., Ablain M., Meyssignac B., Cazenave A., Masters D., Nerem S. and G. Garric (2014). Effect of the processing methodology on satellite altimetry-based global mean sea level rise over the JASON-1 operating period, Journal of Geodesy, in press.Web of ScienceGoogle Scholar

  • Llovel W., Becker M., Cazenave A. and Crétaux J.F. (2010). Contribution of land water storage change to global mean sea level from GRACE and satellite altimetry, C.R. Geosciences, 342, 179-188.Google Scholar

  • Llovel W., Becker M., Cazenave A., Jevrejeva S., Alkama R., Decharme B., Douville H., Ablain M. and Beckley B. (2011). Terrestrial waters and sea level variations on interannual time scale, Global Planet. Change, 75, 76-82. doi:10.1016/j.gloplacha.2010.10.008.Web of ScienceCrossrefGoogle Scholar

  • Llovel W., Fukumori I. and Meyssignac B. (2013). Depth-dependent temperature change contributions to global mean thermosteric sea level rise from 1960 to 2010, Global Planet. Change, 101, 113-118.Web of ScienceGoogle Scholar

  • Meyssignac B. and Cazenave A. (2012). Sea level : a review of present-day and recent-past sea level change and variability, J. Geodyn., 58, 96-109.Web of ScienceGoogle Scholar

  • Nerem R. S., Chambers D. P., Choe C., and Mitchum G. T. (2010), Estimating Mean Sea Level Change from the TOPEX and Jason Altimeter Missions, Marine Geodesy, 33 (1), 435-446.Web of ScienceCrossrefGoogle Scholar

  • Oki T. and Sud Y.C. (1998). Design of Total Runoff Integrating Pathways (TRIP), A Global River Channel Network. Earth Inter., Vol. 2., Paper 1.Google Scholar

  • Okumura Y. and C. Deser (2010). Asymmetry in the duration of El Nino and La Nina. J. Climate, 23, 5826-5843.Google Scholar

  • Trenberth K. and Smith L. (2005).The Mass of the Atmosphere: A Constraint on Global Analyses, J. Climate, 18, 864-875.Google Scholar

  • Velicogna I. and Wahr J. (2013), Time variable gravity observations of ice sheet mass balance:precision and limitations of the GRACE satellite data, Geophys. Res. Lett., 40, 1-9, doi:10.1002/grl.50527.Web of ScienceCrossrefGoogle Scholar

  • Von Schuckmann K., Gaillard F., and Le Traon P. Y. (2009). Global hydrographic variability patterns during 2003-2008, J. Geophys. Res., 114, C09007, doi:10.1029/2008JC005237.CrossrefGoogle Scholar

  • Von Schuckmann K. and Le Traon P.-Y (2011). How well can we derive Global Ocean Indicators from Argo data?, Ocean Sci., 7, 783-791, doi:10.5194/os-7-783-2011.Web of ScienceCrossrefGoogle Scholar

  • Wahr J., Swenson S. and Velicogna I. (2006). Accuracy of GRACE mass estimates, Geophys. Res. Lett., 33, L06401, doi:10.1029/2005GL025305. CrossrefGoogle Scholar


Online erschienen: 11.03.2014

Erschienen im Druck: 01.04.2014

Quellenangabe: Journal of Geodetic Science, Band 4, Heft 1, ISSN (Online) 2081-9943, DOI: https://doi.org/10.2478/jogs-2014-0003.

Zitat exportieren

© by Anny Cazenave . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Zitierende Artikel

Hier finden Sie eine Übersicht über alle Crossref-gelisteten Publikationen, in denen dieser Artikel zitiert wird. Um automatisch über neue Zitierungen dieses Artikels informiert zu werden, aktivieren Sie einfach oben auf dieser Seite den „E-Mail-Alert: Neu zitiert“.

Christopher G. Piecuch and Katherine J. Quinn
Ocean Science, 2016, Jahrgang 12, Nummer 6, Seite 1165
Karina von Schuckmann, Pierre-Yves Le Traon, Enrique Alvarez-Fanjul, Lars Axell, Magdalena Balmaseda, Lars-Anders Breivik, Robert J. W. Brewin, Clement Bricaud, Marie Drevillon, Yann Drillet, Clotilde Dubois, Owen Embury, Hélène Etienne, Marcos García Sotillo, Gilles Garric, Florent Gasparin, Elodie Gutknecht, Stéphanie Guinehut, Fabrice Hernandez, Melanie Juza, Bengt Karlson, Gerasimos Korres, Jean-François Legeais, Bruno Levier, Vidar S. Lien, Rosemary Morrow, Giulio Notarstefano, Laurent Parent, Álvaro Pascual, Begoña Pérez-Gómez, Coralie Perruche, Nadia Pinardi, Andrea Pisano, Pierre-Marie Poulain, Isabelle M. Pujol, Roshin P. Raj, Urmas Raudsepp, Hervé Roquet, Annette Samuelsen, Shubha Sathyendranath, Jun She, Simona Simoncelli, Cosimo Solidoro, Jonathan Tinker, Joaquín Tintoré, Lena Viktorsson, Michael Ablain, Elin Almroth-Rosell, Antonio Bonaduce, Emanuela Clementi, Gianpiero Cossarini, Quentin Dagneaux, Charles Desportes, Stephen Dye, Claudia Fratianni, Simon Good, Eric Greiner, Jerome Gourrion, Mathieu Hamon, Jason Holt, Pat Hyder, John Kennedy, Fernando Manzano-Muñoz, Angélique Melet, Benoit Meyssignac, Sandrine Mulet, Bruno Buongiorno Nardelli, Enda O’Dea, Einar Olason, Aurélien Paulmier, Irene Pérez-González, Rebecca Reid, Marie-Fanny Racault, Dionysios E. Raitsos, Antonio Ramos, Peter Sykes, Tanguy Szekely, and Nathalie Verbrugge
Journal of Operational Oceanography, 2016, Jahrgang 9, Nummer sup2, Seite s235
Fuwen Qiu, Wendong Fang, Aijun Pan, Jing Cha, Shanwu Zhang, and Jiang Huang
Chinese Journal of Oceanology and Limnology, 2017, Jahrgang 35, Nummer 1, Seite 79
H B Dieng, N Champollion, A Cazenave, Y Wada, E Schrama, and B Meyssignac
Environmental Research Letters, 2015, Jahrgang 10, Nummer 12, Seite 124010
Robert E. Kopp, Carling C. Hay, Christopher M. Little, and Jerry X. Mitrovica
Current Climate Change Reports, 2015, Jahrgang 1, Nummer 3, Seite 192

Kommentare (0)